Now showing 1 - 4 of 4
  • 2018Journal Article
    [["dc.bibliographiccitation.artnumber","e0193746"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","PLOS ONE"],["dc.bibliographiccitation.volume","13"],["dc.contributor.author","Gertz, Roman Johannes"],["dc.contributor.author","Lange, Torben"],["dc.contributor.author","Kowallick, Johannes Tammo"],["dc.contributor.author","Backhaus, Sören Jan"],["dc.contributor.author","Steinmetz, Michael"],["dc.contributor.author","Staab, Wieland"],["dc.contributor.author","Kutty, Shelby"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","Schuster, Andreas"],["dc.date.accessioned","2019-07-09T11:45:26Z"],["dc.date.available","2019-07-09T11:45:26Z"],["dc.date.issued","2018"],["dc.description.abstract","AIM: Since cardiovascular magnetic resonance feature-tracking (CMR-FT) has been demonstrated to be of incremental clinical merit we investigated the interchangeability of global left and right ventricular strain parameters between different CMR-FT software solutions. MATERIAL AND METHODS: CMR-cine images of 10 patients without significant reduction in LVEF and RVEF and 10 patients with a significantly impaired systolic function were analyzed using two different types of FT-software (TomTec, Germany; QStrain, Netherlands). Global longitudinal strains (LV GLS, RV GLS), global left ventricular circumferential (GCS) and radial strains (GRS) were assessed. Differences in intra- and inter-observer variability within and between software types based on single and up to three repeated and subsequently averaged measurements were evaluated. RESULTS: Inter-vendor agreement was highest for GCS followed by LV GLS. GRS and RV GLS showed lower inter-vendor agreement. Variability was consistently higher in healthy volunteers as compared to the patient group. Intra-vendor reproducibility was excellent for GCS, LV GLS and RV GLS, but lower for GRS. The impact of repeated measurements was most pronounced for GRS and RV GLS on an intra-vendor level. CONCLUSION: Cardiac pathology has no influence on CMR-FT reproducibility. LV GLS and GCS qualify as the most robust parameters within and between individual software types. Since both parameters can be interchangeably assessed with different software solutions they may enter the clinical arena for optimized diagnostic and prognostic evaluation of cardiovascular morbidity and mortality in various pathologies."],["dc.identifier.doi","10.1371/journal.pone.0193746"],["dc.identifier.pmid","29538467"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15206"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59229"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.haserratum","/handle/2/110092"],["dc.relation.issn","1932-6203"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","610"],["dc.title","Inter-vendor reproducibility of left and right ventricular cardiovascular magnetic resonance myocardial feature-tracking"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2019Journal Article
    [["dc.bibliographiccitation.artnumber","e0210127"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","PLOS ONE"],["dc.bibliographiccitation.volume","14"],["dc.contributor.author","Backhaus, Sören J."],["dc.contributor.author","Metschies, Georg"],["dc.contributor.author","Billing, Marcus"],["dc.contributor.author","Kowallick, Johannes T."],["dc.contributor.author","Gertz, Roman J."],["dc.contributor.author","Lapinskas, Tomas"],["dc.contributor.author","Pieske, Burkert"],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","Bigalke, Boris"],["dc.contributor.author","Kutty, Shelby"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Beerbaum, Philipp"],["dc.contributor.author","Kelle, Sebastian"],["dc.contributor.author","Schuster, Andreas"],["dc.date.accessioned","2019-07-09T11:50:08Z"],["dc.date.available","2019-07-09T11:50:08Z"],["dc.date.issued","2019"],["dc.description.abstract","BACKGROUND: Cardiovascular magnetic resonance feature tracking (CMR-FT) is increasingly used for myocardial deformation assessment including ventricular strain, showing prognostic value beyond established risk markers if used in experienced centres. Little is known about the impact of appropriate training on CMR-FT performance. Consequently, this study aimed to evaluate the impact of training on observer variance using different commercially available CMR-FT software. METHODS: Intra- and inter-observer reproducibility was assessed prior to and after dedicated one-hour observer training. Employed FT software included 3 different commercially available platforms (TomTec, Medis, Circle). Left (LV) and right (RV) ventricular global longitudinal as well as LV circumferential and radial strains (GLS, GCS and GRS) were studied in 12 heart failure patients and 12 healthy volunteers. RESULTS: Training improved intra- and inter-observer reproducibility. GCS and LV GLS showed the highest reproducibility before (ICC >0.86 and >0.81) and after training (ICC >0.91 and >0.92). RV GLS and GRS were more susceptible to tracking inaccuracies and reproducibility was lower. Inter-observer reproducibility was lower than intra-observer reproducibility prior to training with more pronounced improvements after training. Before training, LV strain reproducibility was lower in healthy volunteers as compared to patients with no differences after training. Whilst LV strain reproducibility was sufficient within individual software solutions inter-software comparisons revealed considerable software related variance. CONCLUSION: Observer experience is an important source of variance in CMR-FT derived strain assessment. Dedicated observer training significantly improves reproducibility with most profound benefits in states of high myocardial contractility and potential to facilitate widespread clinical implementation due to optimized robustness and diagnostic performance."],["dc.identifier.doi","10.1371/journal.pone.0210127"],["dc.identifier.pmid","30682045"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15866"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59708"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","1932-6203"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","610"],["dc.title","Cardiovascular magnetic resonance imaging feature tracking: Impact of training on observer performance and reproducibility"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2019Journal Article
    [["dc.bibliographiccitation.artnumber","1"],["dc.bibliographiccitation.firstpage","10"],["dc.bibliographiccitation.journal","European Radiology"],["dc.contributor.author","Uhlig, Johannes"],["dc.contributor.author","Lücke, Christian"],["dc.contributor.author","Vliegenthart, Rozemarijn"],["dc.contributor.author","Loewe, Christian"],["dc.contributor.author","Grothoff, Matthias"],["dc.contributor.author","Schuster, Andreas"],["dc.contributor.author","Lurz, Philipp"],["dc.contributor.author","Jacquier, Alexis"],["dc.contributor.author","Francone, Marco"],["dc.contributor.author","Zapf, Antonia"],["dc.contributor.author","Schülke, Christoph"],["dc.contributor.author","May, Matthias Stefan"],["dc.contributor.author","Bremerich, Jens"],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","Gutberlet, Matthias"],["dc.date.accessioned","2019-07-09T11:51:32Z"],["dc.date.available","2019-07-09T11:51:32Z"],["dc.date.issued","2019"],["dc.description.abstract","OBJECTIVES: To assess the incidence of acute adverse events (AAEs) in gadolinium-enhanced cardiac magnetic resonance (CMR) imaging. METHODS: Gadolinium-based contrast agent (GBCA)-enhanced CMR data from the multinational, multicenter European Society of Cardiovascular Radiology MRCT Registry was included. AAE severity was classified according to the American College of Radiology Manual on Contrast Media (mild, moderate, severe). Multivariable generalized linear mixed effect models were used to assess the likelihood of AAEs in various GBCA, adjusting for pharmacological stressor, main indications (i.e., suspected or known coronary artery disease or myocarditis), age, sex, and submitting center as a random effect. RESULTS: In the study population of 72,839 GBCA-enhanced CMRs, a total of 260 AAEs were reported (0.36%), with a minority of severe AAEs (n = 24, 0.033%). Allergic-like AAEs were less likely than physiologic AAEs (29% versus 71%). Patients without pharmacological stress imaging had a lower AAE rate (0.22%) compared to stress imaging (0.75%), with the highest AAE rates for regadenoson (2.95%). AAE rates also varied by GBCA subtype (overall p < 0.001). There was significant interaction between GBCA and pharmacological stressor (interaction p = 0.025), with AAE rates ranging between 0 and 10% for certain GBCA/stressor combinations. There was further marginal evidence that higher GBCA volume was associated with higher AAE incidence (OR = 1.02, p = 0.05). CONCLUSION: GBCA-enhanced CMR imaging demonstrates low AAE rates comparable to those of other body regions. AAE likelihood correlates with GBCA subtype, pharmacological stressor, and imaging indication. Intravenous fluid administration in patients with cardiac impairment might contribute to these findings. KEY POINTS: • Acute adverse event rates in cardiac magnetic resonance (CMR) imaging with gadolinium-based contrast agents (GBCAs) are low (0.36%), especially for severe adverse events (0.033%). • Mild and moderate adverse events are more frequent during stress CMR imaging. • Physiologic AAEs are more common than allergic AAEs in CMR imaging."],["dc.identifier.doi","10.1007/s00330-019-06171-2"],["dc.identifier.pmid","31041566"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16147"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59966"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","1432-1084"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","610"],["dc.title","Acute adverse events in cardiac MR imaging with gadolinium-based contrast agents: results from the European Society of Cardiovascular Radiology (ESCR) MRCT Registry in 72,839 patients"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2019Journal Article
    [["dc.bibliographiccitation.artnumber","16478"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Scientific Reports"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Tanacli, Radu"],["dc.contributor.author","Hashemi, Djawid"],["dc.contributor.author","Lapinskas, Tomas"],["dc.contributor.author","Edelmann, Frank"],["dc.contributor.author","Gebker, Rolf"],["dc.contributor.author","Pedrizzetti, Gianni"],["dc.contributor.author","Schuster, Andreas"],["dc.contributor.author","Nagel, Eike"],["dc.contributor.author","Pieske, Burkert"],["dc.contributor.author","Düngen, Hans-Dirk"],["dc.contributor.author","Kelle, Sebastian"],["dc.date.accessioned","2019-12-10T14:50:47Z"],["dc.date.accessioned","2021-10-27T13:21:50Z"],["dc.date.available","2019-12-10T14:50:47Z"],["dc.date.available","2021-10-27T13:21:50Z"],["dc.date.issued","2019"],["dc.description.abstract","Heart failure (HF) is associated with progressive ventricular remodeling and impaired contraction that affects distinctly various regions of the myocardium. Our study applied cardiac magnetic resonance (CMR) feature tracking (FT) to assess comparatively myocardial strain at 3 distinct levels: subendocardial (Endo-), mid (Myo-) and subepicardial (Epi-) myocardium across an extended spectrum of patients with HF. 59 patients with HF, divided into 3 subgroups as follows: preserved ejection fraction (HFpEF, N = 18), HF with mid-range ejection fraction (HFmrEF, N = 21), HF with reduced ejection fraction (HFrEF, N = 20) and a group of age- gender- matched volunteers (N = 17) were included. Using CMR FT we assessed systolic longitudinal and circumferential strain and strain-rate at Endo-, Myo- and Epi- levels. Strain values were the highest in the Endo- layer and progressively lower in the Myo- and Epi- layers respectively, this gradient was present in all the patients groups analyzed but decreased progressively in HFmrEF and further on in HFrEF groups. GLS decreased with the severity of the disease in all 3 layers: Normal > HFpEF > HFmrEF > HFrEF (Endo-: -23.0 ± 3.5 > -20.0 ± 3.3 > -16.4 ± 2.2 > -11.0 ± 3.2, p < 0.001, Myo-: -20.7 ± 2.4 > -17.5.0 ± 2.6 > -14.5 ± 2.1 > -9.6 ± 2.7, p < 0.001; Epi-: -15.7 ± 1.9 > -12.2 ± 2.1 > -10.6 ± 2.3 > -7.7 ± 2.3, p < 0.001). In contrast, GCS was not different between the Normal and HFpEF (Endo-: -34.5 ± 6.2 vs -33.9 ± 5.7, p = 0.51; Myo-: -21.9 ± 3.8 vs -21.3 ± 2.2, p = 0.39, Epi-: -11.4 ± 2.0 vs -10.9 ± 2.3, p = 0.54) but was, as well, markedly lower in the systolic heart failure groups: Normal > HFmrEF > HFrEF (Endo-: -34.5 ± 6.2 > -20.0 ± 4.2 > 12.3 ± 4.2, p < 0.001; Myo-: -21.9 ± 3.8 > -13.0 ± 3.4 > -8.0 ± 2.7. p < 0.001; Epi-: -11.4 ± 2.0 > -7.9 ± 2.3 > -4.5 ± 1.9. p < 0.001). CMR feature tracking multilayer strain assessment identifies large range differences between distinct myocardial regions. Our data emphasizes the importance of sub-endocardial myocardium for cardiac contraction and thus, its predilect role in imaging detection of functional impairment. CMR feature tracking offers a convenient, readily available, platform to evaluate myocardial contraction with excellent spatial resolution, rendering further details about discrete areas of the myocardium. Using this technique across distinct groups of patients with heart failure (HF), we demonstrate that subendocardial regions of the myocardium exhibit much higher strain values than mid-myocardium or subepicardial and are more sensitive to detect contractile impairment. We also show comparatively higher values of circumferential strain compared with longitudinal and a higher sensitivity to detect contractile impairment. A newly characterized group of patients, HF with mid-range ejection fraction (EF), shows similar traits of decompensation but has relatively higher strain values as patients with HF with reduced EF."],["dc.identifier.doi","10.1038/s41598-019-52683-8"],["dc.identifier.isbn","31712641"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16898"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/92048"],["dc.language.iso","en"],["dc.notes.intern","Migrated from goescholar"],["dc.relation.eissn","2045-2322"],["dc.relation.issn","2045-2322"],["dc.relation.orgunit","Universitätsmedizin Göttingen"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","610"],["dc.title","Range Variability in CMR Feature Tracking Multilayer Strain across Different Stages of Heart Failure"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI