Now showing 1 - 8 of 8
  • 2015Conference Abstract
    [["dc.bibliographiccitation.firstpage","389"],["dc.bibliographiccitation.journal","FEBS Journal"],["dc.bibliographiccitation.lastpage","390"],["dc.bibliographiccitation.volume","282"],["dc.contributor.author","Barbot, M."],["dc.contributor.author","Jans, D. C."],["dc.contributor.author","Schulz, C."],["dc.contributor.author","Denkert, N."],["dc.contributor.author","Kroppen, B."],["dc.contributor.author","Hoppert, M."],["dc.contributor.author","Jakobs, Sebastian"],["dc.contributor.author","Meinecke, Michael"],["dc.date.accessioned","2018-11-07T09:54:51Z"],["dc.date.available","2018-11-07T09:54:51Z"],["dc.date.issued","2015"],["dc.identifier.isi","000362570607078"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/36626"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.publisher.place","Hoboken"],["dc.relation.eventlocation","Berlin, GERMANY"],["dc.relation.issn","1742-4658"],["dc.relation.issn","1742-464X"],["dc.relation.orgunit","Institut fĂĽr Zellbiochemie"],["dc.title","Mic10 oligomerizes to bend mitochondrial inner membranes at cristae junctions"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]
    Details WOS
  • 2020Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.journal","Autophagy"],["dc.bibliographiccitation.lastpage","21"],["dc.contributor.author","Munzel, Lena"],["dc.contributor.author","Neumann, Piotr"],["dc.contributor.author","Otto, Florian B."],["dc.contributor.author","Krick, Roswitha"],["dc.contributor.author","Metje-Sprink, Janina"],["dc.contributor.author","Kroppen, Benjamin"],["dc.contributor.author","Karedla, Narain"],["dc.contributor.author","Enderlein, Jörg"],["dc.contributor.author","Meinecke, Michael"],["dc.contributor.author","Ficner, Ralf"],["dc.contributor.author","Thumm, Michael"],["dc.date.accessioned","2021-03-05T08:58:48Z"],["dc.date.available","2021-03-05T08:58:48Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1080/15548627.2020.1766332"],["dc.identifier.pmid","32515645"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/80259"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/114"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-393"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P06: Das Zusammenspiel von Organellen-Kontaktstellen und Autophagie in S. cerevisiae"],["dc.relation.eissn","1554-8635"],["dc.relation.issn","1554-8627"],["dc.relation.orgunit","Institut für Zellbiochemie"],["dc.relation.workinggroup","RG Meinecke (Molecular Membrane Biology)"],["dc.relation.workinggroup","RG Thumm (Autophagy)"],["dc.title","Atg21 organizes Atg8 lipidation at the contact of the vacuole with the phagophore"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2015Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","756"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Cell Metabolism"],["dc.bibliographiccitation.lastpage","763"],["dc.bibliographiccitation.volume","21"],["dc.contributor.author","Barbot, Mariam"],["dc.contributor.author","Jans, Daniel C."],["dc.contributor.author","Schulz, Christian"],["dc.contributor.author","Denkert, Niels"],["dc.contributor.author","Kroppen, Benjamin"],["dc.contributor.author","Hoppert, Michael"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Meinecke, Michael"],["dc.date.accessioned","2017-09-07T11:44:24Z"],["dc.date.available","2017-09-07T11:44:24Z"],["dc.date.issued","2015"],["dc.description.abstract","The mitochondrial inner membrane is highly folded and displays a complex molecular architecture. Cristae junctions are highly curved tubular openings that separate cristae membrane invaginations from the surrounding boundary membrane. Despite their central role in many vital cellular processes like apoptosis, the details of cristae junction formation remain elusive. Here we identify Mic10, a core subunit of the recently discovered MICOS complex, as an inner mitochondrial membrane protein with the ability to change membrane morphology in vitro and in vivo. We show that Mic10 spans the inner membrane in a hairpin topology and that its ability to sculpt membranes depends on oligomerization through a glycine-rich motif. Oligomerization mutants fail to induce curvature in model membranes, and when expressed in yeast, mitochondria display an altered inner membrane architecture characterized by drastically decreased numbers of cristae junctions. Thus, we demonstrate that membrane sculpting by Mic10 is essential for cristae junction formation."],["dc.identifier.doi","10.1016/j.cmet.2015.04.006"],["dc.identifier.gro","3141906"],["dc.identifier.isi","000353978700017"],["dc.identifier.pmid","25955211"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2389"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1932-7420"],["dc.relation.issn","1550-4131"],["dc.relation.orgunit","Institut fĂĽr Zellbiochemie"],["dc.title","Mic10 Oligomerizes to Bend Mitochondrial Inner Membranes at Cristae Junctions"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2020Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","13468"],["dc.bibliographiccitation.issue","24"],["dc.bibliographiccitation.journal","Proceedings of the National Academy of Sciences"],["dc.bibliographiccitation.lastpage","13479"],["dc.bibliographiccitation.volume","117"],["dc.contributor.author","Kondratiuk, Ilona"],["dc.contributor.author","Jakhanwal, Shrutee"],["dc.contributor.author","Jin, Jialin"],["dc.contributor.author","Sathyanarayanan, Udhayabhaskar"],["dc.contributor.author","Kroppen, Benjamin"],["dc.contributor.author","Pobbati, Ajaybabu V."],["dc.contributor.author","Krisko, Anita"],["dc.contributor.author","Ashery, Uri"],["dc.contributor.author","Meinecke, Michael"],["dc.contributor.author","Jahn, Reinhard"],["dc.contributor.author","Fasshauer, Dirk"],["dc.contributor.author","Milosevic, Ira"],["dc.date.accessioned","2021-04-14T08:25:38Z"],["dc.date.available","2021-04-14T08:25:38Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1073/pnas.1908232117"],["dc.identifier.pmid","32467162"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/81692"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/113"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P02: Charakterisierung der ER-Mitochondrien-Kontakte und ihre Rolle in der Signalweiterleitung"],["dc.relation","SFB 1190 | P12: Funktionelle Regulation der mitochondrialen Präsequenz-Translokase"],["dc.relation.eissn","1091-6490"],["dc.relation.issn","0027-8424"],["dc.relation.orgunit","Institut für Zellbiochemie"],["dc.relation.workinggroup","RG Meinecke (Molecular Membrane Biology)"],["dc.relation.workinggroup","RG Milosevic (Synaptic Vesicle Dynamics)"],["dc.title","PI(4,5)P 2 -dependent regulation of exocytosis by amisyn, the vertebrate-specific competitor of synaptobrevin 2"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2020Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","2355"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Cellular and Molecular Life Sciences"],["dc.bibliographiccitation.lastpage","2370"],["dc.bibliographiccitation.volume","78"],["dc.contributor.author","Kroppen, Benjamin"],["dc.contributor.author","Teske, Nelli"],["dc.contributor.author","Yambire, King F."],["dc.contributor.author","Denkert, Niels"],["dc.contributor.author","Mukherjee, Indrani"],["dc.contributor.author","Tarasenko, Daryna"],["dc.contributor.author","Jaipuria, Garima"],["dc.contributor.author","Zweckstetter, Markus"],["dc.contributor.author","Milosevic, Ira"],["dc.contributor.author","Steinem, Claudia"],["dc.contributor.author","Meinecke, Michael"],["dc.date.accessioned","2021-04-14T08:23:40Z"],["dc.date.available","2021-04-14T08:23:40Z"],["dc.date.issued","2020"],["dc.description.abstract","Membrane remodeling is a critical process for many membrane trafficking events, including clathrin-mediated endocytosis. Several molecular mechanisms for protein-induced membrane curvature have been described in some detail. Contrary, the effect that the physico-chemical properties of the membrane have on these processes is far less well understood. Here, we show that the membrane binding and curvature-inducing ENTH domain of epsin1 is regulated by phosphatidylserine (PS). ENTH binds to membranes in a PI(4,5)P2-dependent manner but only induces curvature in the presence of PS. On PS-containing membranes, the ENTH domain forms rigid homo-oligomers and assembles into clusters. Membrane binding and membrane remodeling can be separated by structure-to-function mutants. Such oligomerization mutants bind to membranes but do not show membrane remodeling activity. In vivo, they are not able to rescue defects in epidermal growth factor receptor (EGFR) endocytosis in epsin knock-down cells. Together, these data show that the membrane lipid composition is important for the regulation of protein-dependent membrane deformation during clathrin-mediated endocytosis."],["dc.identifier.doi","10.1007/s00018-020-03647-z"],["dc.identifier.pmid","32997199"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/81004"],["dc.identifier.url","https://for2848.gwdguser.de/literature/publications/21"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","FOR 2848: Architektur und Heterogenität der inneren mitochondrialen Membran auf der Nanoskala"],["dc.relation","FOR 2848 | P05: Molekulare Charakterisierung der MICOS abhängigen mitochondrialen Innenmembran-Biogenese."],["dc.relation.eissn","1420-9071"],["dc.relation.issn","1420-682X"],["dc.relation.orgunit","Institut für Zellbiochemie"],["dc.relation.workinggroup","RG Meinecke (Molecular Membrane Biology)"],["dc.rights","CC BY 4.0"],["dc.title","Cooperativity of membrane-protein and protein–protein interactions control membrane remodeling by epsin 1 and affects clathrin-mediated endocytosis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2017Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","889"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","The Journal of Cell Biology"],["dc.bibliographiccitation.lastpage","899"],["dc.bibliographiccitation.volume","216"],["dc.contributor.author","Tarasenko, Daryna"],["dc.contributor.author","Barbot, Mariam"],["dc.contributor.author","Jans, Daniel C."],["dc.contributor.author","Kroppen, Benjamin"],["dc.contributor.author","Sadowski, Boguslawa"],["dc.contributor.author","Heim, Gudrun"],["dc.contributor.author","Möbius, Wiebke"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Meinecke, Michael"],["dc.date.accessioned","2018-01-17T13:22:56Z"],["dc.date.available","2018-01-17T13:22:56Z"],["dc.date.issued","2017"],["dc.description.abstract","The inner membrane (IM) of mitochondria displays an intricate, highly folded architecture and can be divided into two domains: the inner boundary membrane adjacent to the outer membrane and invaginations toward the matrix, called cristae. Both domains are connected by narrow, tubular membrane segments called cristae junctions (CJs). The formation and maintenance of CJs is of vital importance for the organization of the mitochondrial IM and for mitochondrial and cellular physiology. The multisubunit mitochondrial contact site and cristae organizing system (MICOS) was found to be a major factor in CJ formation. In this study, we show that the MICOS core component Mic60 actively bends membranes and, when inserted into prokaryotic membranes, induces the formation of cristae-like plasma membrane invaginations. The intermembrane space domain of Mic60 has a lipid-binding capacity and induces membrane curvature even in the absence of the transmembrane helix. Mic60 homologues from α-proteobacteria display the same membrane deforming activity and are able to partially overcome the deletion of Mic60 in eukaryotic cells. Our results show that membrane bending by Mic60 is an ancient mechanism, important for cristae formation, and had already evolved before α-proteobacteria developed into mitochondria."],["dc.identifier.doi","10.1083/jcb.201609046"],["dc.identifier.pmid","28254827"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11711"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/9"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P01: Untersuchung der Unterschiede in der Zusammensetzung, Funktion und Position von individuellen MICOS Komplexen in einzelnen Säugerzellen"],["dc.relation","SFB 1190 | P12: Funktionelle Regulation der mitochondrialen Präsequenz-Translokase"],["dc.relation.eissn","1540-8140"],["dc.relation.orgunit","Institut für Zellbiochemie"],["dc.relation.workinggroup","RG Jakobs (Structure and Dynamics of Mitochondria)"],["dc.relation.workinggroup","RG Meinecke (Molecular Membrane Biology)"],["dc.rights","CC BY-NC-SA 4.0"],["dc.title","The MICOS component Mic60 displays a conserved membrane-bending activity that is necessary for normal cristae morphology"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2016Conference Abstract
    [["dc.bibliographiccitation.journal","Molecular Biology of the Cell"],["dc.bibliographiccitation.volume","27"],["dc.contributor.author","Tarasenko, D."],["dc.contributor.author","Barbot, M."],["dc.contributor.author","Jans, D. C."],["dc.contributor.author","Kroppen, B."],["dc.contributor.author","Heim, Gudrun"],["dc.contributor.author","Möbius, Wiebke"],["dc.contributor.author","Jakobs, Sebastian"],["dc.contributor.author","Meinecke, Michael"],["dc.date.accessioned","2018-11-07T10:19:35Z"],["dc.date.available","2018-11-07T10:19:35Z"],["dc.date.issued","2016"],["dc.identifier.isi","000396046900520"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/41694"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Amer Soc Cell Biology"],["dc.publisher.place","Bethesda"],["dc.relation.conference","Annual Meeting of the American-Society-for-Cell-Biology (ASCB)"],["dc.relation.eventlocation","San Francisco, CA"],["dc.relation.issn","1939-4586"],["dc.relation.issn","1059-1524"],["dc.relation.orgunit","Institut für Zellbiochemie"],["dc.title","A conserved membrane bending activity of Mic60 is necessary for cristae formation."],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]
    Details WOS
  • 2016Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","19953"],["dc.bibliographiccitation.issue","38"],["dc.bibliographiccitation.journal","The Journal of Biological Chemistry"],["dc.bibliographiccitation.lastpage","19961"],["dc.bibliographiccitation.volume","291"],["dc.contributor.author","Gleisner, Martin"],["dc.contributor.author","Kroppen, Benjamin"],["dc.contributor.author","Fricke, Christian"],["dc.contributor.author","Teske, Nelli"],["dc.contributor.author","Kliesch, Torben-Tobias"],["dc.contributor.author","Janshoff, Andreas"],["dc.contributor.author","Meinecke, Michael"],["dc.contributor.author","Steinem, Claudia"],["dc.date.accessioned","2020-12-10T18:12:56Z"],["dc.date.available","2020-12-10T18:12:56Z"],["dc.date.issued","2016"],["dc.description.abstract","The epsin N-terminal homology domain (ENTH) is a major player in clathrin-mediated endocytosis. To investigate the influence of initial membrane tension on ENTH binding and activity, we established a bilayer system based on adhered giant unilamellar vesicles (GUVs) to be able to control and adjust the membrane tension sigma covering a broad regime. The shape of each individual adhered GUV as well as its adhesion area was monitored by spinning disc confocal laser microscopy. Control of sigma in a range of 0.08-1.02 mN/m was achieved by altering the Mg2+ concentration in solution, which changes the surface adhesion energy per unit area of the GUVs. Specific binding of ENTH to phosphatidylinositol 4,5-bisphosphate leads to a substantial increase in adhesion area of the sessile GUV. At low tension (<0.1 mN/m) binding of ENTH can induce tubular structures, whereas at higher membrane tension the ENTH interaction deflates the sessile GUV and thereby increases the adhesion area. The increase in adhesion area is mainly attributed to a decrease in the area compressibility modulus K-A. We propose that the insertion of the ENTH helix-0 into the membrane is largely responsible for the observed decrease in K-A, which is supported by the observation that the mutant ENTH L6E shows a reduced increase in adhesion area. These results demonstrate that even in the absence of tubule formation, the area compressibility modulus and, as such, the bending rigidity of the membrane is considerably reduced upon ENTH binding. This renders membrane bending and tubule formation energetically less costly."],["dc.identifier.doi","10.1074/jbc.M116.731612"],["dc.identifier.eissn","1083-351X"],["dc.identifier.gro","3141621"],["dc.identifier.isi","000383243100019"],["dc.identifier.issn","0021-9258"],["dc.identifier.pmid","27466364"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/74538"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1083-351X"],["dc.relation.issn","0021-9258"],["dc.relation.orgunit","Institut fĂĽr Zellbiochemie"],["dc.title","Epsin N-terminal Homology Domain (ENTH) Activity as a Function of Membrane Tension"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS