Now showing 1 - 2 of 2
  • 2014Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","118102"],["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","Physical Review Letters"],["dc.bibliographiccitation.volume","113"],["dc.contributor.author","Reusch, Tobias"],["dc.contributor.author","Schuelein, Florian J. R."],["dc.contributor.author","Nicolas, Jan-David"],["dc.contributor.author","Osterhoff, Markus"],["dc.contributor.author","Beerlink, André"],["dc.contributor.author","Krenner, Hubert J."],["dc.contributor.author","Mueller, M."],["dc.contributor.author","Wixforth, Achim"],["dc.contributor.author","Salditt, Tim"],["dc.date.accessioned","2020-11-05T15:05:24Z"],["dc.date.available","2020-11-05T15:05:24Z"],["dc.date.issued","2014"],["dc.description.abstract","We use standing surface acoustic waves to induce coherent phonons in model lipid multilayers deposited on a piezoelectric surface. Probing the structure by phase-controlled stroboscopic x-ray pulses we find that the internal lipid bilayer electron density profile oscillates in response to the externally driven motion of the lipid film. The structural response to the well-controlled motion is a strong indication that bilayer structure and membrane fluctuations are intrinsically coupled, even though these structural changes are averaged out in equilibrium and time integrating measurements. Here the effects are revealed by a timing scheme with temporal resolution on the picosecond scale in combination with the sub-nm spatial resolution, enabled by high brilliance synchrotron x-ray reflectivity."],["dc.identifier.doi","10.1103/PhysRevLett.113.118102"],["dc.identifier.gro","3142054"],["dc.identifier.isi","000345970800012"],["dc.identifier.pmid","25260008"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/11552"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/68462"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-352.6"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1079-7114"],["dc.relation.issn","0031-9007"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.rights","CC BY 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/3.0/"],["dc.subject.gro","x-ray scattering"],["dc.subject.gro","membrane biophysics"],["dc.title","Collective Lipid Bilayer Dynamics Excited by Surface Acoustic Waves"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2013Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","072127"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","AIP Advances"],["dc.bibliographiccitation.volume","3"],["dc.contributor.author","Reusch, Tobias"],["dc.contributor.author","Schuelein, Florian J. R."],["dc.contributor.author","Boemer, C."],["dc.contributor.author","Osterhoff, Markus"],["dc.contributor.author","Beerlink, André"],["dc.contributor.author","Krenner, Hubert J."],["dc.contributor.author","Wixforth, Achim"],["dc.contributor.author","Salditt, Tim"],["dc.date.accessioned","2017-09-07T11:47:39Z"],["dc.date.available","2017-09-07T11:47:39Z"],["dc.date.issued","2013"],["dc.description.abstract","We have carried out time resolved stroboscopic diffraction experiments on standing surface acoustic waves (SAWs) of Rayleigh type on a LiNbO3 substrate. A novel timing system has been developed and commissioned at the storage ring Petra III of Desy, allowing for phase locked stroboscopic diffraction experiments applicable to a broad range of timescales and experimental conditions. The combination of atomic structural resolution with temporal resolution on the picosecond time scale allows for the observation of the atomistic displacements for each time (or phase) point within the SAW period. A seamless transition between dynamical and kinematic scattering regimes as a function of the instantaneous surface amplitude induced by the standing SAW is observed. The interpretation and control of the experiment, in particular disentangling the diffraction effects (kinematic to dynamical diffraction regime) from possible non-linear surface effects is unambiguously enabled by the precise control of phase between the standing SAW and the synchrotron bunches. The example illustrates the great flexibility and universality of the presented timing system, opening up new opportunities for a broad range of time resolved experiments. (C) 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License."],["dc.identifier.doi","10.1063/1.4816801"],["dc.identifier.fs","600179"],["dc.identifier.gro","3142331"],["dc.identifier.isi","000322527000027"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/10607"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/7097"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","2158-3226"],["dc.relation.orgunit","Fakultät für Physik"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.rights","CC BY 3.0"],["dc.subject.gro","x-ray scattering"],["dc.subject.gro","membrane biophysics"],["dc.title","Standing surface acoustic waves in LiNbO3 studied by time resolved X-ray diffraction at Petra III"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI WOS