Now showing 1 - 4 of 4
  • 2009Journal Article
    [["dc.bibliographiccitation.firstpage","133"],["dc.bibliographiccitation.issue","102"],["dc.bibliographiccitation.journal","Austrian Journal of Earth Sciences [untranslated]"],["dc.bibliographiccitation.lastpage","145"],["dc.contributor.author","Dunkl, István"],["dc.contributor.author","Schuller, Volker"],["dc.contributor.author","Frisch, Wolfgang"],["dc.contributor.author","DANIŠÍK, Martin"],["dc.contributor.author","Melinte, Mihaela Carmen"],["dc.date.accessioned","2019-07-10T08:13:24Z"],["dc.date.available","2019-07-10T08:13:24Z"],["dc.date.issued","2009"],["dc.description.abstract","The Apuseni Mountains were formed during Late Cretaceous convergence between the Tisia and the Dacia microplates as part of the Alpine orogen. The mountain range comprises a sedimentary succession similar to the Gosau Group of the Eastern Alps. This work focuses on the sedimentological and geodynamic evolution of the Gosau basin of the Apuseni Mts. and attempts a direct comparison to the relatively well studied Gosau Group deposits of the Eastern Alps. By analyzing the Upper Cretaceous Gosau sediments and the surrounding geological units, we were able to add critical evidence for reconstructing the Late Mesozoic to Paleogene geodynamic evolution of the Apuseni Mountains. Nannoplankton investigations show that Gosau sedimentation started diachronously after Late Turonian times. The burial history indicates low subsidence rates during deposition of the terrestrial and shallow marine Lower Gosau Subgroup and increased subsidence rates during the period of deep marine Upper Gosau Subgroup sedimentation. The Gosau Group of the Apuseni Mountains was deposited in a forearc basin supplied with sedimentary material from an obducted forearc region and the crystalline hinterland, as reflected by heavy mineral and paleocurrent analysis. Zircon fission track age populations show no fluctuation of exhumation rates in the surrounding geological units, which served as source areas for the detrital material, whereas increased exhumation at the K/Pg boundary can be proven by thermal modeling on apatite fission track data. Synchronously to the Gosau sedimentation, deep marine turbidites were deposited in the deep-sea trench basin formed by the subduction of the Transylvanian Ocean. The similarities to the Gosau occurrences of the Eastern Alps lead to direct correlation with the Alpine paleogeographic evolution and to the assumption that a continuous ocean basin (South Penninic - Transylvanian Ocean Basin) was consumed until Late Cretaceous times."],["dc.identifier.fs","502852"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/5923"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/61234"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","0251-7493"],["dc.relation.orgunit","Fakultät für Geowissenschaften und Geographie"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject.ddc","550"],["dc.title","Upper Cretaceous Gosau deposits of the Apuseni Mountains (Romania) - similarities and differences to the Eastern Alps"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details
  • 2019Journal Article
    [["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.journal","International Journal of Earth Sciences"],["dc.bibliographiccitation.lastpage","16"],["dc.contributor.author","Dunkl, István"],["dc.contributor.author","Farics, Éva"],["dc.contributor.author","Józsa, Sándor"],["dc.contributor.author","Lukács, Réka"],["dc.contributor.author","Haas, János"],["dc.contributor.author","Budai, Tamás"],["dc.date.accessioned","2019-07-09T11:51:36Z"],["dc.date.available","2019-07-09T11:51:36Z"],["dc.date.issued","2019"],["dc.description.abstract","The South Alpine–Dinaridic realm was affected by igneous activity in the Middle Triassic; the marine carbonate platforms and the adjacent basins contain highly variable intrusive-volcanic assemblages. We studied the petrography and determined the zircon U–Pb ages of the Triassic volcanic products in the Transdanubian Range. The geochemical features and thus the geodynamic context of the magmatism are badly known, as the rocks experienced variable chemical alteration. The exact duration of the igneous activity is also poorly constrained, as the geochronological data of the former studies were obtained mostly by the weathering-sensitive K–Ar and Rb–Sr methods and thus some data even being younger than the age of the stratigraphic cover. The presence of andesite dikes and of pebbles and cobbles (< 20 cm) of basalt, andesite, rhyolite and of rhyolitic tuff in the Triassic carbonate platform deposits indicates that within the Transdanubian Range formed a volcanic complex in Triassic. The major mineralogical and geochemical features of the Transdanubian igneous suite are similar to the Triassic formations in the Southern Alps. However, dissimilar zircon composition excludes the immediate relationship of the zircon-bearing silicic formations in the two tectonic units. New U–Pb ages show that the beginning of the volcanic activity is probably coeval with the eruption of the widespread “pietra verde” trachytic tuffs in the Upper Anisian–Ladinian successions, but the majority of the ages are younger than those ash layers. The new age constraints give a bench-mark for the termination of the volcanic activity in Carnian time in the Transdanubian Range."],["dc.identifier.doi","10.1007/s00531-019-01714-w"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16152"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59971"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","1437-3262"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","550"],["dc.title","Traces of Carnian volcanic activity in the Transdanubian Range, Hungary"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2010Journal Article
    [["dc.bibliographiccitation.firstpage","4"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Austrian Journal of Earth Sciences"],["dc.bibliographiccitation.lastpage","28"],["dc.bibliographiccitation.volume","103"],["dc.contributor.author","Kilias, Adamantios"],["dc.contributor.author","Frisch, Wolfgang"],["dc.contributor.author","Avgerinas, Asterios"],["dc.contributor.author","Dunkl, Istvan"],["dc.contributor.author","Falalakis, George"],["dc.contributor.author","Gawlick, Hans-Jürgen"],["dc.date.accessioned","2019-07-10T08:13:48Z"],["dc.date.available","2019-07-10T08:13:48Z"],["dc.date.issued","2010"],["dc.description.abstract","Geological mapping and detailed structural investigations combined with geochronological and stratigraphic data, as well as fissiontrack age dating carried out on the northern part of the Pelagonian basement and the adjacent Vardar/Axios sedimentary and metamorphic sequences in the Hellenic Alps (northwestern Greece and Former Yugoslavian Republic of Macedonia) allow us to reconstruct the geometry, kinematics and deformation history of the Pelagonian nappe pile during the Alpine orogeny. We distinguish seven deformational events (D and D to D ). Deformation started in Middle to Late Jurassic time and was associated with inneroceanic HP 1 6 thrusting, ophiolite obduction, and NW- to WNW-directed nappe stacking of the Lower and Upper Pelagonian unit (D ). The lower unit 1 was metamorphosed under greenschist to amphibolite facies conditions with relatively high pressures (T=450-620°C, P=8-12,5 kb). Blueschist-facies metamorphic assemblages (D , T=450-500°C, P>12,5 kb) are restricted to the boundary zone between both Pela- HP gonian units. Transgressive Late Jurassic to Early Cretaceous shallow-water limestones and clastic sediments on top of the obducted ophiolites are probably related to extension and basin formation simultaneously with nappe stacking and metamorphism in the Pelagonian nappes beneath. Contractional tectonics with the same kinematics as during D continued in Aptian-Albian time and was asso- 1 ciated with intense retrogression (D , T=280-380°C, P=4-5 kb). Low-angle mylonitic extensional shear zones of low-grade metamor- 2 phism with top-to-NE sense of movement (D ) developed simultaneously with basin formation and sedimentation of shallow-water 3 limestones and flysch-like sediments in Late Cretaceous to Paleocene times. Intense imbrication under semi-ductile to brittle conditions of all tectonic units occurred during Paleocene to Eocene time with SW-directed movement towards the foreland (D ). A large 4 Pelagonian antiformal structure formed during D shortening. In Oligocene to recent time, D and D created brittle low- and high- 4 5 6 angle normal faults, respectively."],["dc.description.abstract","Im nördlichen Teil des Pelagonischen Kristallins und in den metamorphen und sedimentären Gesteinsfolgen der angrenzenden Vardar/Axios-Zone der Helleniden (NW-Griechenland und Frühere Jugoslawische Republik Mazedonien) wurde eine geologische Kartierung und ausführliche strukturgeologische Untersuchungen durchgeführt. Verbunden mit geochronologischen und stratigraphischen Daten erlauben unsere Ergebnisse, die Geometrie, Kinematik und Deformationsgeschichte des pelagonischen Deckenlandes während der alpidischen Gebirgsbildung zu rekonstruieren. Wir haben sieben Deformationsereignisse (D und D bis D ) HP 1 6 unterschieden. Die Deformationsgeschichte begann im Mittleren bis Späten Jura mit intra-ozeanischer Überschiebung, Ophiolith- Obduktion und NW- bis WNW-gerichteter Deckenstapelung der Unteren und Oberen Pelagonischen Einheit (D ). Die untere Einheit 1 wurde unter den Bedingungen der Grünschiefer- bis Amphibolitfazies bei relativ hohem Druck metamorph überprägt (T 450-620°C, P 8-12,5 kb). Blauschieferfazielle Paragenesen sind in der tektonischen Kontaktzone zwischen den beiden pelagonischen Einheiten erhalten (D : T 450-500°C, P >12,5 kb). Transgressiv auf obduzierten Ophiolithen abgelagerte oberjurassische bis unterkretazische HP Flachwasserkalke und klastische Sedimente sind wahrscheinlich mit Extension und Beckenbildung im obersten Krustenstockwerk und gleichzeitiger Deckenstapelung und Metamorphose in den unteren pelagonischen Decken verbunden. Im Aptium-Albium setzte sich die Einengungstektonik mit derselben Kinematik wie während D fort und ging mit intensiver retrograder Metamorphose einher 1 (D : T 280-380°C, P 4-5 kb). Flach einfallende mylonitische Abscherungszonen, die unter schwachen grünschieferfaziellen Metamor- 2 phosebedingungen NE-gerichteten Schersinn anzeigen (D ), entwickelten sich während der Oberen Kreide und des Paleozäns, 3 gleichzeitig mit Beckenbildung und Sedimentation von Flachwasserkalken und Flysch. Intensive Verkürzung und Imbrikation aller tektonischen Einheiten (D ) fand unter semiduktilen bis spröden Bedingungen und nach SW (gegen das Vorland) gerichteter Haupt- 4 bewegung während des Paleozäns bis Eozäns statt. Eine große Antiform bildete sich im Pelagonikum während dieser Einengungsphase. Vom Oligozän bis heute bildeten sich spröde, flach oder steil geneigte Abschiebungen (D und D ) 5 6 _______________________________________________________________________________ ."],["dc.identifier.fs","580082"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/7485"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/61340"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.orgunit","Fakultät für Geowissenschaften und Geographie"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject.ddc","550"],["dc.title","Alpine architecture and kinematics of deformation of the northern Pelagonian nappe pile in the Hellenides"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details
  • 2008Journal Article
    [["dc.bibliographiccitation.firstpage","31"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Swiss Journal of Geosciences"],["dc.bibliographiccitation.lastpage","54"],["dc.bibliographiccitation.volume","101"],["dc.contributor.author","Mikes, Tamas"],["dc.contributor.author","Christ, Dominik"],["dc.contributor.author","Petri, Rüdiger"],["dc.contributor.author","Dunkl, István"],["dc.contributor.author","Frei, Dirk"],["dc.contributor.author","Báldi-Beke, Mária"],["dc.contributor.author","Reitner, Joachim"],["dc.contributor.author","Wemmer, Klaus"],["dc.contributor.author","Hrvatović, Hazim"],["dc.contributor.author","Eynatten, Hilmar von"],["dc.date.accessioned","2019-07-09T11:53:02Z"],["dc.date.available","2019-07-09T11:53:02Z"],["dc.date.issued","2008"],["dc.description.abstract","Sandwiched between the Adriatic Carbonate Platform and the Dinaride Ophiolite Zone, the Bosnian Flysch forms a c. 3000 m thick, intensely folded stack of Upper Jurassic to Cretaceous mixed carbonate and siliciclastic sediments in the Dinarides. New petrographic, heavy mineral, zircon U/Pb and fission-track data as well as biostratigraphic evidence allow us to reconstruct the palaeogeology of the source areas of the Bosnian Flysch basin in late Mesozoic times. Middle Jurassic intraoceanic subduction of the Neotethys was shortly followed by exhumation of the overriding oceanic plate. Trench sedimentation was controlled by a dual sediment supply from the sub-ophiolitic high-grade metamorphic soles and from the distal continental margin of the Adriatic plate. Following obduction onto Adria, from the Jurassic–Cretaceous transition onwards a vast clastic wedge (Vranduk Formation) was developed in front of the leading edge, fed by continental basement units of Adria that experienced Early Cretaceous synsedimentary cooling, by the overlying ophiolitic thrust sheets and by redeposited elements of coeval Urgonian facies reefs grown on the thrust wedge complex. Following mid-Cretaceous deformation and thermal overprint of the Vranduk Formation, the depozone migrated further towards SW and received increasing amounts of redeposited carbonate detritus released from the Adriatic Carbonate Platform margin (Ugar Formation). Subordinate siliciclastic source components indicate changing source rocks on the upper plate, with ophiolites becoming subordinate. The zone of the continental basement previously affected by the Late Jurassic–Early Cretaceous thermal imprint has been removed; instead, the basement mostly supplied detritus with a wide range of pre-Jurassic cooling ages. However, a c. 80 Ma, largely synsedimentary cooling event is also recorded by the Ugar Formation, that contrasts the predominantly Early Cretaceous cooling of the Adriatic basement and suggests, at least locally, a fast exhumation."],["dc.identifier.doi","10.1007/s00015-008-1291-z"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/6684"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/60324"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.orgunit","Fakultät für Geowissenschaften und Geographie"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject.ddc","550"],["dc.title","Provenance of the Bosnian Flysch"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI