Options
Riemensperger, Thomas Dieter
Loading...
Preferred name
Riemensperger, Thomas Dieter
Official Name
Riemensperger, Thomas Dieter
Alternative Name
Riemensperger, Thomas D.
Riemensperger, T. D.
Riemensperger, Thomas
Riemensperger, T.
Main Affiliation
Now showing 1 - 7 of 7
2012Conference Abstract [["dc.bibliographiccitation.journal","Journal of Neurogenetics"],["dc.bibliographiccitation.volume","26"],["dc.contributor.author","Gaffuri, A. L."],["dc.contributor.author","Riemensperger, Thomas"],["dc.contributor.author","Roland, A."],["dc.contributor.author","Gervasi, N."],["dc.contributor.author","Li, L."],["dc.contributor.author","Ladarre, D."],["dc.contributor.author","Placais, P. Y."],["dc.contributor.author","Willaime, H."],["dc.contributor.author","Tabeling, P."],["dc.contributor.author","Tchenio, P."],["dc.contributor.author","Birman, Serge"],["dc.contributor.author","Preat, T."],["dc.contributor.author","Lenkei, Z."],["dc.date.accessioned","2018-11-07T09:02:26Z"],["dc.date.available","2018-11-07T09:02:26Z"],["dc.date.issued","2012"],["dc.format.extent","7"],["dc.identifier.isi","000314975100015"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/24682"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Informa Healthcare"],["dc.publisher.place","London"],["dc.relation.issn","0167-7063"],["dc.title","Subcellular dynamics of CAMP/PKA signaling in single Drosophila mushroom body neurons matured in low-density cultures"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details WOS2012Review [["dc.bibliographiccitation.firstpage","1169"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Biochimica et Biophysica Acta (BBA) - General Subjects"],["dc.bibliographiccitation.lastpage","1178"],["dc.bibliographiccitation.volume","1820"],["dc.contributor.author","Riemensperger, Thomas"],["dc.contributor.author","Pech, Ulrike"],["dc.contributor.author","Dipt, Shubham"],["dc.contributor.author","Fiala, Andre"],["dc.date.accessioned","2018-11-07T09:08:06Z"],["dc.date.available","2018-11-07T09:08:06Z"],["dc.date.issued","2012"],["dc.description.abstract","Background: Drosophila melanogaster is one of the best-studied model organisms in biology, mainly because of the versatility of methods by which heredity and specific expression of genes can be traced and manipulated. Sophisticated genetic tools have been developed to express transgenes in selected cell types, and these techniques can be utilized to target DNA-encoded fluorescence probes to genetically defined subsets of neurons. Neuroscientists make use of this approach to monitor the activity of restricted types or subsets of neurons in the brain and the peripheral nervous system. Since membrane depolarization is typically accompanied by an increase in intracellular calcium ions, calcium-sensitive fluorescence proteins provide favorable tools to monitor the spatio-temporal activity across groups of neurons. Scope of review: Here we describe approaches to perform optical calcium imaging in Drosophila in consideration of various calcium sensors and expression systems. In addition, we outline by way of examples for which particular neuronal systems in Drosophila optical calcium imaging have been used. Finally, we exemplify briefly how optical calcium imaging in the brain of Drosophila can be carried out in practice. Major conclusions and general significance: Drosophila provides an excellent model organism to combine genetic expression systems with optical calcium imaging in order to investigate principles of sensory coding, neuronal plasticity, and processing of neuronal information underlying behavior. This article is part of a Special Issue entitled Biochemical, Biophysical and Genetic Approaches to Intracellular Calcium Signaling. (C) 2012 Elsevier B.V. All rights reserved."],["dc.identifier.doi","10.1016/j.bbagen.2012.02.013"],["dc.identifier.isi","000305595300003"],["dc.identifier.pmid","22402253"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/25948"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Elsevier Science Bv"],["dc.relation.issn","0304-4165"],["dc.title","Optical calcium imaging in the nervous system of Drosophila melanogaster"],["dc.type","review"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2014Journal Article [["dc.bibliographiccitation.firstpage","1819"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Journal of Neuroscience"],["dc.bibliographiccitation.lastpage","1837"],["dc.bibliographiccitation.volume","34"],["dc.contributor.author","Barth, Jonas"],["dc.contributor.author","Dipt, Shubham"],["dc.contributor.author","Pech, Ulrike"],["dc.contributor.author","Hermann, Moritz"],["dc.contributor.author","Riemensperger, Thomas"],["dc.contributor.author","Fiala, Andre"],["dc.date.accessioned","2018-11-07T09:44:54Z"],["dc.date.available","2018-11-07T09:44:54Z"],["dc.date.issued","2014"],["dc.description.abstract","Training can improve the ability to discriminate between similar, confusable stimuli, including odors. One possibility of enhancing behaviorally expressed discrimination (i.e., sensory acuity) relies on differential associative learning, during which animals are forced to detect the differences between similar stimuli. Drosophila represents a key model organism for analyzing neuronal mechanisms underlying both odor processing and olfactory learning. However, the ability of flies to enhance fine discrimination between similar odors through differential associative learning has not been analyzed in detail. We performed associative conditioning experiments using chemically similar odorants that we show to evoke overlapping neuronal activity in the fly's antennal lobes and highly correlated activity in mushroom body lobes. We compared the animals' performance in discriminating between these odors after subjecting them to one of two types of training: either absolute conditioning, in which only one odor is reinforced, or differential conditioning, in which one odor is reinforced and a second odor is explicitly not reinforced. First, we show that differential conditioning decreases behavioral generalization of similar odorants in a choice situation. Second, we demonstrate that this learned enhancement in olfactory acuity relies on both conditioned excitation and conditioned inhibition. Third, inhibitory local interneurons in the antennal lobes are shown to be required for behavioral fine discrimination between the two similar odors. Fourth, differential, but not absolute, training causes decorrelation of odor representations in the mushroom body. In conclusion, differential training with similar odors ultimately induces a behaviorally expressed contrast enhancement between the two similar stimuli that facilitates fine discrimination."],["dc.identifier.doi","10.1523/JNEUROSCI.2598-13.2014"],["dc.identifier.isi","000331455000024"],["dc.identifier.pmid","24478363"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/34499"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Soc Neuroscience"],["dc.relation.issn","0270-6474"],["dc.title","Differential Associative Training Enhances Olfactory Acuity in Drosophila melanogaster"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2017Journal Article [["dc.bibliographiccitation.firstpage","464"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Cell Reports"],["dc.bibliographiccitation.lastpage","478"],["dc.bibliographiccitation.volume","20"],["dc.contributor.author","Martelli, Carlotta"],["dc.contributor.author","Pech, Ulrike"],["dc.contributor.author","Kobbenbring, Simon"],["dc.contributor.author","Pauls, Dennis"],["dc.contributor.author","Bahl, Britta"],["dc.contributor.author","Sommer, Mirjam Vanessa"],["dc.contributor.author","Pooryasin, Atefeh"],["dc.contributor.author","Barth, Jonas"],["dc.contributor.author","Arias, Carmina Warth Perez"],["dc.contributor.author","Vassiliou, Chrystalleni"],["dc.contributor.author","Luna, Abud Jose Farca"],["dc.contributor.author","Poppinga, Haiko"],["dc.contributor.author","Richter, Florian Gerhard"],["dc.contributor.author","Wegener, Christian"],["dc.contributor.author","Fiala, André"],["dc.contributor.author","Riemensperger, Thomas"],["dc.date.accessioned","2020-12-10T14:23:00Z"],["dc.date.available","2020-12-10T14:23:00Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1016/j.celrep.2017.06.043"],["dc.identifier.issn","2211-1247"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/71799"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","SIFamide Translates Hunger Signals into Appetitive and Feeding Behavior in Drosophila"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2018Journal Article [["dc.bibliographiccitation.firstpage","1204"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Neuron"],["dc.bibliographiccitation.lastpage","1215.e5"],["dc.bibliographiccitation.volume","99"],["dc.contributor.author","Mayseless, Oded"],["dc.contributor.author","Berns, Dominic S."],["dc.contributor.author","Yu, Xiaomeng M."],["dc.contributor.author","Riemensperger, Thomas"],["dc.contributor.author","Fiala, André"],["dc.contributor.author","Schuldiner, Oren"],["dc.date.accessioned","2020-12-10T15:20:29Z"],["dc.date.available","2020-12-10T15:20:29Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1016/j.neuron.2018.07.050"],["dc.identifier.issn","0896-6273"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/72686"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Developmental Coordination during Olfactory Circuit Remodeling in Drosophila"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2012Conference Abstract [["dc.bibliographiccitation.firstpage","46"],["dc.bibliographiccitation.journal","Journal of Neurogenetics"],["dc.bibliographiccitation.lastpage","47"],["dc.bibliographiccitation.volume","26"],["dc.contributor.author","Kobbenbring, Simon"],["dc.contributor.author","Sommer, M., V"],["dc.contributor.author","Riemensperger, Thomas"],["dc.contributor.author","Fiala, Andre"],["dc.date.accessioned","2018-11-07T09:02:27Z"],["dc.date.available","2018-11-07T09:02:27Z"],["dc.date.issued","2012"],["dc.identifier.isi","000314975100115"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/24684"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Informa Healthcare"],["dc.publisher.place","London"],["dc.relation.issn","0167-7063"],["dc.title","The neuropeptide SIFamide enhances appetitive behavior in Drosophila melanogaster"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details WOS2014Journal Article [["dc.bibliographiccitation.artnumber","5810"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","5"],["dc.contributor.author","AzimiHashemi, N."],["dc.contributor.author","Erbguth, K."],["dc.contributor.author","Vogt, A."],["dc.contributor.author","Riemensperger, Thomas"],["dc.contributor.author","Rauch, Elke"],["dc.contributor.author","Woodmansee, D."],["dc.contributor.author","Nagpal, J."],["dc.contributor.author","Brauner, Martin"],["dc.contributor.author","Sheves, M."],["dc.contributor.author","Fiala, Andre"],["dc.contributor.author","Kattner, Lars"],["dc.contributor.author","Trauner, D."],["dc.contributor.author","Hegemann, Peter"],["dc.contributor.author","Gottschalk, Alexander"],["dc.contributor.author","Liewald, Jana F."],["dc.date.accessioned","2018-11-07T09:31:44Z"],["dc.date.available","2018-11-07T09:31:44Z"],["dc.date.issued","2014"],["dc.description.abstract","Optogenetic tools have become indispensable in neuroscience to stimulate or inhibit excitable cells by light. Channelrhodopsin-2 (ChR2) variants have been established by mutating the opsin backbone or by mining related algal genomes. As an alternative strategy, we surveyed synthetic retinal analogues combined with microbial rhodopsins for functional and spectral properties, capitalizing on assays in C. elegans, HEK cells and larval Drosophila. Compared with all-trans retinal (ATR), Dimethylamino-retinal (DMAR) shifts the action spectra maxima of ChR2 variants H134R and H134R/T159C from 480 to 520 nm. Moreover, DMAR decelerates the photocycle of ChR2(H134R) and (H134R/T159C), thereby reducing the light intensity required for persistent channel activation. In hyperpolarizing archaerhodopsin-3 and Mac, naphthyl-retinal and thiophene-retinal support activity alike ATR, yet at altered peak wavelengths. Our experiments enable applications of retinal analogues in colour tuning and altering photocycle characteristics of optogenetic tools, thereby increasing the operational light sensitivity of existing cell lines or transgenic animals."],["dc.identifier.doi","10.1038/ncomms6810"],["dc.identifier.isi","000347613700009"],["dc.identifier.pmid","25503804"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/31599"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Nature Publishing Group"],["dc.relation.issn","2041-1723"],["dc.title","Synthetic retinal analogues modify the spectral and kinetic characteristics of microbial rhodopsin optogenetic tools"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS