Options
Wales, Pauline
Loading...
Preferred name
Wales, Pauline
Official Name
Wales, Pauline
Alternative Name
Wales, P.
Now showing 1 - 3 of 3
2015Journal Article [["dc.bibliographiccitation.artnumber","e1994"],["dc.bibliographiccitation.journal","Cell Death and Disease"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Oliveira, Luis M. A."],["dc.contributor.author","Falomir-Lockhart, Lisandro J."],["dc.contributor.author","Botelho, Michelle Gralle"],["dc.contributor.author","Lin, K-H"],["dc.contributor.author","Wales, Pauline"],["dc.contributor.author","Koch, Jan Christoph"],["dc.contributor.author","Gerhardt, Ellen"],["dc.contributor.author","Taschenberger, Holger"],["dc.contributor.author","Outeiro, Tiago Fleming"],["dc.contributor.author","Lingor, Paul"],["dc.contributor.author","Schuele, B."],["dc.contributor.author","Arndt-Jovin, Donna J."],["dc.contributor.author","Jovin, Thomas M."],["dc.date.accessioned","2018-11-07T09:49:15Z"],["dc.date.available","2018-11-07T09:49:15Z"],["dc.date.issued","2015"],["dc.description.abstract","We have assessed the impact of alpha-synuclein overexpression on the differentiation potential and phenotypic signatures of two neural-committed induced pluripotent stem cell lines derived from a Parkinson's disease patient with a triplication of the human SNCA genomic locus. In parallel, comparative studies were performed on two control lines derived from healthy individuals and lines generated from the patient iPS-derived neuroprogenitor lines infected with a lentivirus incorporating a small hairpin RNA to knock down the SNCA mRNA. The SNCA triplication lines exhibited a reduced capacity to differentiate into dopaminergic or GABAergic neurons and decreased neurite outgrowth and lower neuronal activity compared with control cultures. This delayed maturation phenotype was confirmed by gene expression profiling, which revealed a significant reduction in mRNA for genes implicated in neuronal differentiation such as delta-like homolog 1 (DLK1), gamma-aminobutyric acid type B receptor subunit 2 (GABABR2), nuclear receptor related 1 protein (NURR1), G-protein-regulated inward-rectifier potassium channel 2 (GIRK-2) and tyrosine hydroxylase (TH). The differentiated patient cells also demonstrated increased autophagic flux when stressed with chloroquine. We conclude that a two-fold overexpression of alpha-synuclein caused by a triplication of the SNCA gene is sufficient to impair the differentiation of neuronal progenitor cells, a finding with implications for adult neurogenesis and Parkinson's disease progression, particularly in the context of bioenergetic dysfunction."],["dc.identifier.doi","10.1038/cddis.2015.318"],["dc.identifier.isi","000367155300027"],["dc.identifier.pmid","26610207"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/12755"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/35470"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Nature Publishing Group"],["dc.relation.issn","2041-4889"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Elevated alpha-synuclein caused by SNCA gene triplication impairs neuronal differentiation and maturation in Parkinson's patient-derived induced pluripotent stem cells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2016Journal Article [["dc.bibliographiccitation.artnumber","e0157852"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","PLoS ONE"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Pinho, Raquel"],["dc.contributor.author","Guedes, Leonor C."],["dc.contributor.author","Soreq, Lilach"],["dc.contributor.author","Lobo, Patricia P."],["dc.contributor.author","Mestre, Tiago"],["dc.contributor.author","Coelho, Miguel"],["dc.contributor.author","Rosa, Mario M."],["dc.contributor.author","Goncalves, Nilza"],["dc.contributor.author","Wales, Pauline"],["dc.contributor.author","Mendes, Tiago"],["dc.contributor.author","Gerhardt, Ellen"],["dc.contributor.author","Fahlbusch, Christiane"],["dc.contributor.author","Bonifati, Vincenzo"],["dc.contributor.author","Bonin, Michael"],["dc.contributor.author","Miltenberger-Miltenyi, Gabriel"],["dc.contributor.author","Borovecki, Fran"],["dc.contributor.author","Soreq, Hermona"],["dc.contributor.author","Ferreira, Joaquim J."],["dc.contributor.author","Outeiro, Tiago Fleming"],["dc.date.accessioned","2018-11-07T10:12:42Z"],["dc.date.available","2018-11-07T10:12:42Z"],["dc.date.issued","2016"],["dc.description.abstract","The prognosis of neurodegenerative disorders is clinically challenging due to the inexistence of established biomarkers for predicting disease progression. Here, we performed an exploratory cross-sectional, case-control study aimed at determining whether gene expression differences in peripheral blood may be used as a signature of Parkinson's disease (PD) progression, thereby shedding light into potential molecular mechanisms underlying disease development. We compared transcriptional profiles in the blood from 34 PD patients who developed postural instability within ten years with those of 33 patients who did not develop postural instability within this time frame. Our study identified >200 differentially expressed genes between the two groups. The expression of several of the genes identified was previously found deregulated in animal models of PD and in PD patients. Relevant genes were selected for validation by real-time PCR in a subset of patients. The genes validated were linked to nucleic acid metabolism, mitochondria, immune response and intracellular-transport. Interestingly, we also found deregulation of these genes in a dopaminergic cell model of PD, a simple paradigm that can now be used to further dissect the role of these molecular players on dopaminergic cell loss. Altogether, our study provides preliminary evidence that expression changes in specific groups of genes and pathways, detected in peripheral blood samples, may be correlated with differential PD progression. Our exploratory study suggests that peripheral gene expression profiling may prove valuable for assisting in prediction of PD prognosis, and identifies novel culprits possibly involved in dopaminergic cell death. Given the exploratory nature of our study, further investigations using independent, well-characterized cohorts will be essential in order to validate our candidates as predictors of PD prognosis and to definitively confirm the value of gene expression analysis in aiding patient stratification and therapeutic intervention."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2016"],["dc.identifier.doi","10.1371/journal.pone.0157852"],["dc.identifier.isi","000378212000048"],["dc.identifier.pmid","27322389"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/13385"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/40290"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Public Library Science"],["dc.relation.haserratum","/handle/2/102958"],["dc.relation.issn","1932-6203"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Gene Expression Differences in Peripheral Blood of Parkinson's Disease Patients with Distinct Progression Profiles"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2015Journal Article [["dc.bibliographiccitation.artnumber","UNSP e0116919"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","PLoS ONE"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Chen, Xiqun"],["dc.contributor.author","Wales, Pauline"],["dc.contributor.author","Quinti, Luisa"],["dc.contributor.author","Zuo, Fuxing"],["dc.contributor.author","Moniot, Sebastien"],["dc.contributor.author","Herisson, Fanny"],["dc.contributor.author","Rauf, Nazifa Abdul"],["dc.contributor.author","Wang, H."],["dc.contributor.author","Silverman, Richard B."],["dc.contributor.author","Ayata, Cenk"],["dc.contributor.author","Maxwell, Michelle M."],["dc.contributor.author","Steegborn, Clemens"],["dc.contributor.author","Schwarzschild, Michael A."],["dc.contributor.author","Outeiro, Tiago Fleming"],["dc.contributor.author","Kazantsev, Aleksey G."],["dc.date.accessioned","2018-11-07T10:02:03Z"],["dc.date.available","2018-11-07T10:02:03Z"],["dc.date.issued","2015"],["dc.description.abstract","Sirtuin deacetylases regulate diverse cellular pathways and influence disease processes. Our previous studies identified the brain-enriched sirtuin-2 (SIRT2) deacetylase as a potential drug target to counteract neurodegeneration. In the present study, we characterize SIRT2 inhibition activity of the brain-permeable compound AK7 and examine the efficacy of this small molecule in models of Parkinson's disease, amyotrophic lateral sclerosis and cerebral ischemia. Our results demonstrate that AK7 is neuroprotective in models of Parkinson's disease; it ameliorates alpha-synuclein toxicity in vitro and prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopamine depletion and dopaminergic neuron loss in vivo. The compound does not show beneficial effects in mouse models of amyotrophic lateral sclerosis and cerebral ischemia. These findings underscore the specificity of protective effects observed here in models of Parkinson's disease, and previously in Huntington's disease, and support the development of SIRT2 inhibitors as potential therapeutics for the two neurodegenerative diseases."],["dc.identifier.doi","10.1371/journal.pone.0116919"],["dc.identifier.isi","000348205300044"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/11628"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/38152"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Public Library Science"],["dc.relation.issn","1932-6203"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","The Sirtuin-2 Inhibitor AK7 Is Neuroprotective in Models of Parkinson's Disease but Not Amyotrophic Lateral Sclerosis and Cerebral Ischemia"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI WOS