Options
Maiti, Manisankar
Loading...
Preferred name
Maiti, Manisankar
Official Name
Maiti, Manisankar
Alternative Name
Maiti, M.
Main Affiliation
Now showing 1 - 4 of 4
2020Journal Article [["dc.bibliographiccitation.journal","eLife"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Liutkute, Marija"],["dc.contributor.author","Maiti, Manisankar"],["dc.contributor.author","Samatova, Ekaterina"],["dc.contributor.author","Enderlein, Jörg"],["dc.contributor.author","Rodnina, Marina V."],["dc.date.accessioned","2021-03-05T08:59:20Z"],["dc.date.available","2021-03-05T08:59:20Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.7554/eLife.60895"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/80427"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-393"],["dc.relation.eissn","2050-084X"],["dc.title","Gradual compaction of the nascent peptide during cotranslational folding on the ribosome"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI2019Journal Article [["dc.bibliographiccitation.firstpage","189a"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Biophysical Journal"],["dc.bibliographiccitation.lastpage","190a"],["dc.bibliographiccitation.volume","116"],["dc.contributor.author","Liutkute, Marija"],["dc.contributor.author","Samatova, Ekaterina"],["dc.contributor.author","Maiti, Manisankar"],["dc.contributor.author","Holtkamp, Wolf H."],["dc.contributor.author","Enderlein, Jörg"],["dc.contributor.author","Rodnina, Marina V."],["dc.date.accessioned","2020-12-10T14:22:45Z"],["dc.date.available","2020-12-10T14:22:45Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1016/j.bpj.2018.11.1050"],["dc.identifier.issn","0006-3495"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/71722"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Monitoring Dynamics of Protein Nascent Chain on the Ribosome using PET-FCS"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2021Journal Article [["dc.bibliographiccitation.firstpage","e2100474118"],["dc.bibliographiccitation.issue","26"],["dc.bibliographiccitation.journal","Proceedings of the National Academy of Sciences"],["dc.bibliographiccitation.volume","118"],["dc.contributor.author","Mercier, Evan"],["dc.contributor.author","Wang, Xiaolin"],["dc.contributor.author","Maiti, Manisankar"],["dc.contributor.author","Wintermeyer, Wolfgang"],["dc.contributor.author","Rodnina, Marina V."],["dc.date.accessioned","2022-03-01T11:46:26Z"],["dc.date.available","2022-03-01T11:46:26Z"],["dc.date.issued","2021"],["dc.description.abstract","During synthesis of membrane proteins, transmembrane segments (TMs) of nascent proteins emerging from the ribosome are inserted into the central pore of the translocon (SecYEG in bacteria) and access the phospholipid bilayer through the open lateral gate formed of two helices of SecY. Here we use single-molecule fluorescence resonance energy transfer to monitor lateral-gate fluctuations in SecYEG embedded in nanodiscs containing native membrane phospholipids. We find the lateral gate to be highly dynamic, sampling the whole range of conformations between open and closed even in the absence of ligands, and we suggest a statistical model-free approach to evaluate the ensemble dynamics. Lateral gate fluctuations take place on both short (submillisecond) and long (subsecond) timescales. Ribosome binding and TM insertion do not halt fluctuations but tend to increase sampling of the open state. When YidC, a constituent of the holotranslocon, is bound to SecYEG, TM insertion facilitates substantial opening of the gate, which may aid in the folding of YidC-dependent polytopic membrane proteins. Mutations in lateral gate residues showing in vivo phenotypes change the range of favored states, underscoring the biological significance of lateral gate fluctuations. The results suggest how rapid fluctuations of the lateral gate contribute to the biogenesis of inner-membrane proteins."],["dc.description.abstract","During synthesis of membrane proteins, transmembrane segments (TMs) of nascent proteins emerging from the ribosome are inserted into the central pore of the translocon (SecYEG in bacteria) and access the phospholipid bilayer through the open lateral gate formed of two helices of SecY. Here we use single-molecule fluorescence resonance energy transfer to monitor lateral-gate fluctuations in SecYEG embedded in nanodiscs containing native membrane phospholipids. We find the lateral gate to be highly dynamic, sampling the whole range of conformations between open and closed even in the absence of ligands, and we suggest a statistical model-free approach to evaluate the ensemble dynamics. Lateral gate fluctuations take place on both short (submillisecond) and long (subsecond) timescales. Ribosome binding and TM insertion do not halt fluctuations but tend to increase sampling of the open state. When YidC, a constituent of the holotranslocon, is bound to SecYEG, TM insertion facilitates substantial opening of the gate, which may aid in the folding of YidC-dependent polytopic membrane proteins. Mutations in lateral gate residues showing in vivo phenotypes change the range of favored states, underscoring the biological significance of lateral gate fluctuations. The results suggest how rapid fluctuations of the lateral gate contribute to the biogenesis of inner-membrane proteins."],["dc.identifier.doi","10.1073/pnas.2100474118"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103666"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-531"],["dc.relation.eissn","1091-6490"],["dc.relation.issn","0027-8424"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0/"],["dc.title","Lateral gate dynamics of the bacterial translocon during cotranslational membrane protein insertion"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI2022Journal Article [["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","The EMBO Journal"],["dc.bibliographiccitation.volume","41"],["dc.contributor.author","Agirrezabala, Xabier"],["dc.contributor.author","Samatova, Ekaterina"],["dc.contributor.author","Macher, Meline"],["dc.contributor.author","Liutkute, Marija"],["dc.contributor.author","Maiti, Manisankar"],["dc.contributor.author","Gil‐Carton, David"],["dc.contributor.author","Novacek, Jiri"],["dc.contributor.author","Valle, Mikel"],["dc.contributor.author","Rodnina, Marina V."],["dc.date.accessioned","2022-03-01T11:44:18Z"],["dc.date.available","2022-03-01T11:44:18Z"],["dc.date.issued","2022"],["dc.identifier.doi","10.15252/embj.2021109175"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/102988"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-531"],["dc.relation.eissn","1460-2075"],["dc.relation.issn","0261-4189"],["dc.title","A switch from α‐helical to β‐strand conformation during co‐translational protein folding"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI