Now showing 1 - 5 of 5
  • 2010Journal Article
    [["dc.bibliographiccitation.firstpage","879"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Archives of General Psychiatry"],["dc.bibliographiccitation.lastpage","888"],["dc.bibliographiccitation.volume","67"],["dc.contributor.author","Begemann, Martin"],["dc.contributor.author","Grube, Sabrina"],["dc.contributor.author","Papiol, Sergi"],["dc.contributor.author","Malzahn, Dörte"],["dc.contributor.author","Krampe, Henning"],["dc.contributor.author","Ribbe, Katja"],["dc.contributor.author","Friedrichs, Heidi"],["dc.contributor.author","Radyushkin, Konstantin"],["dc.contributor.author","El-Kordi, Ahmed"],["dc.contributor.author","Benseler, Fritz"],["dc.contributor.author","Hannke, Kathrin"],["dc.contributor.author","Sperling, Swetlana"],["dc.contributor.author","Schwerdtfeger, Dayana"],["dc.contributor.author","Thanhäuser, Ivonne"],["dc.contributor.author","Gerchen, Martin Fungisai"],["dc.contributor.author","Ghorbani, Mohammed"],["dc.contributor.author","Gutwinski, Stefan"],["dc.contributor.author","Hilmes, Constanze"],["dc.contributor.author","Leppert, Richard"],["dc.contributor.author","Ronnenberg, Anja"],["dc.contributor.author","Sowislo, Julia"],["dc.contributor.author","Stawicki, Sabina"],["dc.contributor.author","Stödtke, Maren"],["dc.contributor.author","Szuszies, Christoph"],["dc.contributor.author","Reim, Kerstin"],["dc.contributor.author","Riggert, Joachim"],["dc.contributor.author","Eckstein, Fritz"],["dc.contributor.author","Falkai, Peter"],["dc.contributor.author","Bickeböller, Heike"],["dc.contributor.author","Nave, Klaus-Armin"],["dc.contributor.author","Brose, Nils"],["dc.contributor.author","Ehrenreich, Hannelore"],["dc.date.accessioned","2017-09-07T11:46:57Z"],["dc.date.available","2017-09-07T11:46:57Z"],["dc.date.issued","2010"],["dc.description.abstract","Context: Schizophrenia is the collective term for a heterogeneous group of mental disorders with a still obscure biological basis. In particular, the specific contribution of risk or candidate gene variants to the complex schizophrenic phenotype is largely unknown. Objective: To prepare the ground for a novel “phenomics” approach, a unique schizophrenia patient database was established by GRAS (Göttingen Research Association for Schizophrenia), designed to allow association of genetic information with quantifiable phenotypes. Because synaptic dysfunction plays a key role in schizophrenia, the complexin 2 gene (CPLX2) was examined in the first phenotype-based genetic association study (PGAS) of GRAS. Design: Subsequent to a classic case-control approach, we analyzed the contribution of CPLX2 polymorphisms to discrete cognitive domains within the schizophrenic population. To gain mechanistic insight into how certain CPLX2 variants influence gene expression and function, peripheral blood mononuclear cells of patients, Cplxnull mutantmice, and transfected cells were investigated.Setting: Coordinating research center (Max Planck Institute of Experimental Medicine) and 23 collaboratingpsychiatric centers all over Germany.Participants: One thousand seventy-one patients with schizophrenia (DSM-IV) examined by an invariant investigator team, resulting in the GRAS database with more than 3000 phenotypic data points per patient, and 1079 healthy control subjects of comparable ethnicity.Main Outcome Measure: Cognitive performance including executive functioning, reasoning, and verbal learning/memory. Results: Six single-nucleotide polymorphisms, distributed over the whole CPLX2 gene, were found to be highly associated with current cognition of schizophrenic subjects but only marginally with premorbid intelligence. Correspondingly, in Cplx2-null mutant mice, prominent cognitive loss of function was obtained only in combination with a minor brain lesion applied during puberty, modeling a clinically relevant environmental risk (“second hit”) for schizophrenia. In the human CPLX2 gene, 1 of the identified 6 cognition-relevant single-nucleotide polymorphisms, rs3822674 in the 3´ untranslated region, was detected to influence microRNA-498 binding and gene expression. The same marker was associated with differential expression of CPLX2 in peripheral blood mononuclear cells. Conclusions: The PGAS allows identification of markerassociated clinical/biological traits. Current cognitive performance in schizophrenic patients is modified by CPLX2 variants modulating posttranscriptional gene expression"],["dc.identifier.doi","10.1001/archgenpsychiatry.2010.107"],["dc.identifier.fs","577608"],["dc.identifier.gro","3150567"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/6097"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/7343"],["dc.language.iso","en"],["dc.notes.intern","Migrated from goescholar"],["dc.notes.status","final"],["dc.rights.access","closedAccess"],["dc.subject","Schizophrenia"],["dc.subject.ddc","610"],["dc.title","Modification of cognitive performance in schizophrenia by complexin 2 gene polymorphisms"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2011Journal Article
    [["dc.bibliographiccitation.artnumber","27"],["dc.bibliographiccitation.journal","BMC Biology"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Sargin, Derya"],["dc.contributor.author","El-Kordi, Ahmed"],["dc.contributor.author","Agarwal, Amit"],["dc.contributor.author","Müller, Michael"],["dc.contributor.author","Wojcik, Sonja M."],["dc.contributor.author","Hassouna, Imam"],["dc.contributor.author","Sperling, Swetlana"],["dc.contributor.author","Nave, Klaus-Armin"],["dc.contributor.author","Ehrenreich, Hannelore"],["dc.date.accessioned","2017-09-07T11:46:35Z"],["dc.date.available","2017-09-07T11:46:35Z"],["dc.date.issued","2011"],["dc.description.abstract","BACKGROUND: Erythropoietin (EPO) and its receptor (EPOR) are expressed in the developing brain and their transcription is upregulated in adult neurons and glia upon injury or neurodegeneration. We have shown neuroprotective effects and improved cognition in patients with neuropsychiatric diseases treated with EPO. However, the critical EPO targets in brain are unknown, and separation of direct and indirect effects has remained difficult, given the role of EPO in hematopoiesis and brain oxygen supply. RESULTS: Here we demonstrate that mice with transgenic expression of a constitutively active EPOR isoform (cEPOR) in pyramidal neurons of cortex and hippocampus exhibit enhancement of spatial learning, cognitive flexibility, social memory, and attentional capacities, accompanied by increased impulsivity. Superior cognitive performance is associated with augmented long-term potentiation of cEPOR expressing neurons in hippocampal slices. CONCLUSIONS: Active EPOR stimulates neuronal plasticity independent of any hematopoietic effects and in addition to its neuroprotective actions. This property of EPOR signaling should be exploited for defining novel strategies to therapeutically enhance cognitive performance in disease conditions."],["dc.format.extent","16"],["dc.identifier.doi","10.1186/1741-7007-9-27"],["dc.identifier.gro","3150548"],["dc.identifier.pmid","21527022"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/6376"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/7322"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.rights","CC BY 2.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/2.0"],["dc.title","Expression of constitutively active erythropoietin receptor in pyramidal neurons of cortex and hippocampus boosts higher cognitive functions in mice"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2013Journal Article
    [["dc.bibliographiccitation.artnumber","e254"],["dc.bibliographiccitation.journal","Translational Psychiatry"],["dc.bibliographiccitation.volume","3"],["dc.contributor.author","El-Kordi, Ahmed"],["dc.contributor.author","Kästner, Anne"],["dc.contributor.author","Grube, Sabrina"],["dc.contributor.author","Klugmann, M."],["dc.contributor.author","Begemann, Martin"],["dc.contributor.author","Sperling, Swetlana"],["dc.contributor.author","Hammerschmidt, Kurt"],["dc.contributor.author","Hammer, Christian"],["dc.contributor.author","Stepniak, Beata"],["dc.contributor.author","Patzig, Julia"],["dc.contributor.author","Monasterio-Schrader, P. D."],["dc.contributor.author","Strenzke, N."],["dc.contributor.author","Flügge, G."],["dc.contributor.author","Werner, Hauke B."],["dc.contributor.author","Pawlak, R."],["dc.contributor.author","Nave, Klaus-Armin"],["dc.contributor.author","Ehrenreich, Hannelore"],["dc.date.accessioned","2017-09-07T11:46:37Z"],["dc.date.available","2017-09-07T11:46:37Z"],["dc.date.issued","2013"],["dc.description.abstract","Claustrophobia, the well-known fear of being trapped in narrow/closed spaces, is often considered a conditioned response to traumatic experience. Surprisingly, we found that mutations affecting a single gene, encoding a stress-regulated neuronal protein, can cause claustrophobia. Gpm6a-deficient mice develop normally and lack obvious behavioral abnormalities. However, when mildly stressed by single-housing, these mice develop a striking claustrophobia-like phenotype, which is not inducible in wild-type controls, even by severe stress. The human GPM6A gene is located on chromosome 4q32-q34, a region linked to panic disorder. Sequence analysis of 115 claustrophobic and non-claustrophobic subjects identified nine variants in the noncoding region of the gene that are more frequent in affected individuals (P=0.028). One variant in the 3'untranslated region was linked to claustrophobia in two small pedigrees. This mutant mRNA is functional but cannot be silenced by neuronal miR124 derived itself from a stress-regulated transcript. We suggest that loosing dynamic regulation of neuronal GPM6A expression poses a genetic risk for claustrophobia."],["dc.format.extent","12"],["dc.identifier.doi","10.1038/tp.2013.28"],["dc.identifier.gro","3150562"],["dc.identifier.pmid","23632458"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/10616"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/7336"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.rights","CC BY-NC-SA 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-sa/3.0"],["dc.subject","chromosome 4; GPM6A; human pedigree; miR124; mouse mutant; panic disorder"],["dc.title","A single gene defect causing claustrophobia"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2009Journal Article
    [["dc.bibliographiccitation.artnumber","37"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","BMC Biology"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","El-Kordi, Ahmed"],["dc.contributor.author","Radyushkin, Konstantin"],["dc.contributor.author","Ehrenreich, Hannelore"],["dc.date.accessioned","2017-09-07T11:46:20Z"],["dc.date.available","2017-09-07T11:46:20Z"],["dc.date.issued","2009"],["dc.description.abstract","BACKGROUND: Executive functions, learning and attention are imperative facets of cognitive performance, affected in many neuropsychiatric disorders. Recently, we have shown that recombinant human erythropoietin improves cognitive functions in patients with chronic schizophrenia, and that it leads in healthy mice to enhanced hippocampal long-term potentiation, an electrophysiological correlate of learning and memory. To create an experimental basis for further mechanistic insight into erythropoietin-modulated cognitive processes, we employed the Five Choice Serial Reaction Time Task. This procedure allows the study of the effects of erythropoietin on discrete processes of learning and attention in a sequential fashion. RESULTS: Male mice were treated for 3 weeks with erythropoietin (5,000 IU/kg) versus placebo intraperitoneally every other day, beginning at postnatal day 28. After termination of treatment, mice were started on the Five Choice Serial Reaction Time Task, with daily training and testing extending to about 3 months.Overall, a significantly higher proportion of erythropoietin-treated mice finished the task, that is, reached the criteria of adequately reacting to a 1.0 sec flash light out of five arbitrarily appearing choices. During acquisition of this capability, that is, over almost all sequential training phases, learning readouts (magazine training, operant and discriminant learning, stability of performance) were superior in erythropoietin-treated versus control mice. CONCLUSION: Early erythropoietin treatment leads to lasting improvement of cognitive performance in healthy mice. This finding should be exploited in novel treatment strategies for brain diseases."],["dc.format.extent","8"],["dc.identifier.doi","10.1186/1741-7007-7-37"],["dc.identifier.gro","3150482"],["dc.identifier.pmid","19586522"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/6140"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/7251"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Erythropoietin improves operant conditioning and stability of cognitive performance in mice"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2008Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","37"],["dc.bibliographiccitation.journal","BMC Biology"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Adamcio, Bartosz"],["dc.contributor.author","Sargin, Derya"],["dc.contributor.author","Stradomska, Alicja"],["dc.contributor.author","Medrihan, Lucian"],["dc.contributor.author","Gertler, Christoph"],["dc.contributor.author","Theis, Fabian"],["dc.contributor.author","Zhang, Mingyue"],["dc.contributor.author","Müller, Michael"],["dc.contributor.author","Hassouna, Imam"],["dc.contributor.author","Hannke, Kathrin"],["dc.contributor.author","Sperling, Swetlana"],["dc.contributor.author","Radyushkin, Konstantin"],["dc.contributor.author","El-Kordi, Ahmed"],["dc.contributor.author","Schulze, Lizzy"],["dc.contributor.author","Ronnenberg, Anja"],["dc.contributor.author","Wolf, Fred"],["dc.contributor.author","Brose, Nils"],["dc.contributor.author","Rhee, Jeong-Seop"],["dc.contributor.author","Zhang, Weiqi"],["dc.contributor.author","Ehrenreich, Hannelore"],["dc.date.accessioned","2017-09-07T11:48:12Z"],["dc.date.available","2017-09-07T11:48:12Z"],["dc.date.issued","2008"],["dc.description.abstract","Background: Erythropoietin (EPO) improves cognition of human subjects in the clinical setting by as yet unknown mechanisms. We developed a mouse model of robust cognitive improvement by EPO to obtain the first clues of how EPO influences cognition, and how it may act on hippocampal neurons to modulate plasticity. Results: We show here that a 3-week treatment of young mice with EPO enhances long-term potentiation (LTP), a cellular correlate of learning processes in the CAI region of the hippocampus. This treatment concomitantly alters short-term synaptic plasticity and synaptic transmission, shifting the balance of excitatory and inhibitory activity. These effects are accompanied by an improvement of hippocampus dependent memory, persisting for 3 weeks after termination of EPO injections, and are independent of changes in hematocrit. Networks of EPO-treated primary hippocampal neurons develop lower overall spiking activity but enhanced bursting in discrete neuronal assemblies. At the level of developing single neurons, EPO treatment reduces the typical increase in excitatory synaptic transmission without changing the number of synaptic boutons, consistent with prolonged functional silencing of synapses. Conclusion: We conclude that EPO improves hippocampus dependent memory by modulating plasticity, synaptic connectivity and activity of memory-related neuronal networks. These mechanisms of action of EPO have to be further exploited for treating neuropsychiatric diseases."],["dc.identifier.doi","10.1186/1741-7007-6-37"],["dc.identifier.gro","3143237"],["dc.identifier.isi","000260109300001"],["dc.identifier.pmid","18782446"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/8430"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/729"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1741-7007"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Erythropoietin enhances hippocampal long-term potentiation and memory"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS