Options
Meyer, Ralf G.
Loading...
Preferred name
Meyer, Ralf G.
Official Name
Meyer, Ralf G.
Alternative Name
Meyer, R. G
Meyer, Ralf
Meyer, R.
Meyer, Ralph G.
Meyer, Ralph
Main Affiliation
Now showing 1 - 8 of 8
2006Journal Article [["dc.bibliographiccitation.firstpage","161"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Journal of the Institute of Mathematics of Jussieu. JIMJ. Journal de l'Institut de Mathematiques de Jussieu"],["dc.bibliographiccitation.lastpage","186"],["dc.bibliographiccitation.volume","5"],["dc.contributor.author","Emerson, Heath"],["dc.contributor.author","Meyer, Ralf"],["dc.date.accessioned","2017-09-07T11:55:03Z"],["dc.date.available","2017-09-07T11:55:03Z"],["dc.date.issued","2006"],["dc.description.abstract","We formulate and study a new coarse (co-)assembly map. It involves a modification of the Higson corona construction and produces a map dual in an appropriate sense to the standard coarse assembly map. The new assembly map is shown to be an isomorphism in many cases. For the underlying metric space of a group, the coarse co-assembly map is closely related to the existence of a dual Dirac morphism and thus to the Dirac dual Dirac method of attacking the Novikov conjecture."],["dc.identifier.doi","10.1017/S147474800500023X"],["dc.identifier.gro","3146616"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4401"],["dc.language.iso","en"],["dc.notes.intern","mathe"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.relation.issn","1474-7480"],["dc.title","Dualizing the coarse assembly map"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI2008Book Chapter [["dc.bibliographiccitation.firstpage","71"],["dc.bibliographiccitation.lastpage","89"],["dc.contributor.author","Emerson, Heath"],["dc.contributor.author","Meyer, Ralf"],["dc.contributor.editor","Cortiñas, Guillermo"],["dc.contributor.editor","Cuntz, Joachim"],["dc.contributor.editor","Karoubi, Max"],["dc.contributor.editor","Nest, Ryszard"],["dc.contributor.editor","Weibel, Charles A."],["dc.date.accessioned","2017-09-07T11:55:02Z"],["dc.date.available","2017-09-07T11:55:02Z"],["dc.date.issued","2008"],["dc.description.abstract","We study an equivariant co-assembly map that is dual to the usual Baum–Connes assembly map and closely related to coarse geometry, equivariant Kasparov theory, and the existence of dual Dirac morphisms. As applications, we prove the existence of dual Dirac morphisms for groups with suitable compactifications, that is, satisfying the Carlsson–Pedersen condition, and we study a K-theoretic counterpart to the proper Lipschitz cohomology of Connes, Gromov and Moscovici."],["dc.identifier.doi","10.4171/060-1/3"],["dc.identifier.gro","3146607"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4391"],["dc.language.iso","en"],["dc.notes.intern","mathe"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.publisher","European Mathematical Society"],["dc.publisher.place","Zürich"],["dc.relation.doi","10.4171/060"],["dc.relation.eisbn","978-3-03719-560-4"],["dc.relation.isbn","978-3-03719-060-9"],["dc.relation.ispartof","K-theory and noncommutative geometry"],["dc.title","Coarse and equivariant co-assembly maps"],["dc.type","book_chapter"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI2014Journal Article [["dc.bibliographiccitation.firstpage","141"],["dc.bibliographiccitation.journal","Documenta Mathematica"],["dc.bibliographiccitation.lastpage","194"],["dc.bibliographiccitation.volume","19"],["dc.contributor.author","Dell'Ambrogio, I."],["dc.contributor.author","Emerson, Heath"],["dc.contributor.author","Meyer, Ralf"],["dc.date.accessioned","2017-09-07T11:54:57Z"],["dc.date.available","2017-09-07T11:54:57Z"],["dc.date.issued","2014"],["dc.identifier.gro","3146577"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4360"],["dc.notes.intern","mathe"],["dc.notes.status","public"],["dc.notes.submitter","chake"],["dc.relation.issn","1431-0635"],["dc.title","An equivariant Lefschetz fixed-point formula for correspondences"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details2007Journal Article [["dc.bibliographiccitation.firstpage","185"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Topology. An International Journal of Mathematics"],["dc.bibliographiccitation.lastpage","209"],["dc.bibliographiccitation.volume","46"],["dc.contributor.author","Emerson, Heath"],["dc.contributor.author","Meyer, Ralf"],["dc.date.accessioned","2017-09-07T11:55:00Z"],["dc.date.available","2017-09-07T11:55:00Z"],["dc.date.issued","2007"],["dc.identifier.doi","10.1016/j.top.2007.02.001"],["dc.identifier.gro","3146613"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4397"],["dc.language.iso","en"],["dc.notes.intern","mathe"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.relation.issn","0040-9383"],["dc.title","A descent principle for the Dirac--dual-Dirac method"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI2010Journal Article [["dc.bibliographiccitation.firstpage","2840"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Advances in Mathematics"],["dc.bibliographiccitation.lastpage","2882"],["dc.bibliographiccitation.volume","225"],["dc.contributor.author","Emerson, Heath"],["dc.contributor.author","Meyer, Ralf"],["dc.date.accessioned","2017-09-07T11:54:59Z"],["dc.date.available","2017-09-07T11:54:59Z"],["dc.date.issued","2010"],["dc.description.abstract","The construction of topological index maps for equivariant families of Dirac operators requires factoring a general smooth map through maps of a very simple type: zero sections of vector bundles, open embeddings, and vector bundle projections. Roughly speaking, a normally non-singular map is a map together with such a factorisation. These factorisations are models for the topological index map. Under some assumptions concerning the existence of equivariant vector bundles, any smooth map admits a normal factorisation, and two such factorisations are unique up to a certain notion of equivalence. To prove this, we generalise the Mostow Embedding Theorem to spaces equipped with proper groupoid actions. We also discuss orientations of normally non-singular maps with respect to a cohomology theory and show that oriented normally non-singular maps induce wrong-way maps on the chosen cohomology theory. For K-oriented normally non-singular maps, we also get a functor to Kasparov's equivariant KK-theory. We interpret this functor as a topological index map."],["dc.identifier.doi","10.1016/j.aim.2010.05.011"],["dc.identifier.gro","3146597"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4380"],["dc.language.iso","en"],["dc.notes.intern","mathe"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.relation.issn","0001-8708"],["dc.title","Equivariant embedding theorems and topological index maps"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI2010Journal Article [["dc.bibliographiccitation.firstpage","2883"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Advances in Mathematics"],["dc.bibliographiccitation.lastpage","2919"],["dc.bibliographiccitation.volume","225"],["dc.contributor.author","Emerson, Heath"],["dc.contributor.author","Meyer, Ralf"],["dc.date.accessioned","2017-09-07T11:54:59Z"],["dc.date.available","2017-09-07T11:54:59Z"],["dc.date.issued","2010"],["dc.identifier.doi","10.1016/j.aim.2010.04.024"],["dc.identifier.gro","3146596"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4379"],["dc.notes.intern","mathe"],["dc.notes.status","public"],["dc.notes.submitter","chake"],["dc.relation.issn","0001-8708"],["dc.title","Bivariant ehBtheory via correspondences"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI2006Journal Article [["dc.bibliographiccitation.firstpage","853"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Mathematische Annalen"],["dc.bibliographiccitation.lastpage","904"],["dc.bibliographiccitation.volume","334"],["dc.contributor.author","Emerson, Heath"],["dc.contributor.author","Meyer, Ralf"],["dc.date.accessioned","2017-09-07T11:55:03Z"],["dc.date.available","2017-09-07T11:55:03Z"],["dc.date.issued","2006"],["dc.identifier.doi","10.1007/s00208-005-0747-y"],["dc.identifier.gro","3146617"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4402"],["dc.language.iso","en"],["dc.notes.intern","mathe"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.relation.issn","0025-5831"],["dc.title","Euler characteristics and Gysin sequences for group actions on boundaries"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI2009Journal Article [["dc.bibliographiccitation.firstpage","123"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Journal of Topology"],["dc.bibliographiccitation.lastpage","156"],["dc.bibliographiccitation.volume","2"],["dc.contributor.author","Emerson, Heath"],["dc.contributor.author","Meyer, Ralf"],["dc.date.accessioned","2017-09-07T11:54:58Z"],["dc.date.available","2017-09-07T11:54:58Z"],["dc.date.issued","2009"],["dc.description.abstract","We interpret certain equivariant Kasparov groups as equivariant representable K-theory groups and compute these via a classifying space and as K-theory groups of suitableσ-C∗-algebras. We also relate equivariant vector bundles to theseσ-C∗-algebras and provide sufficient conditions for equivariant vector bundles to generate representable K-theory. We mostly work in the generality of locally compact groupoids with Haar systems."],["dc.identifier.doi","10.1112/jtopol/jtp003"],["dc.identifier.gro","3146604"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4387"],["dc.language.iso","en"],["dc.notes.intern","mathe"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.relation.issn","1753-8416"],["dc.title","Equivariant representable K-theory"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI