Options
Meyer, Ralf G.
Loading...
Preferred name
Meyer, Ralf G.
Official Name
Meyer, Ralf G.
Alternative Name
Meyer, R. G
Meyer, Ralf
Meyer, R.
Meyer, Ralph G.
Meyer, Ralph
Main Affiliation
Now showing 1 - 2 of 2
2009Journal Article [["dc.bibliographiccitation.firstpage","215"],["dc.bibliographiccitation.journal","Münster Journal of Mathematics"],["dc.bibliographiccitation.lastpage","252"],["dc.bibliographiccitation.volume","2"],["dc.contributor.author","Meyer, Ralf"],["dc.contributor.author","Nest, Ryszard"],["dc.date.accessioned","2019-07-10T08:13:29Z"],["dc.date.available","2019-07-10T08:13:29Z"],["dc.date.issued","2009"],["dc.description.abstract","We carefully define and study C -algebras over topological spaces, possibly non- Hausdorff, and review some relevant results from point-set topology along the way. We explain the triangulated category structure on the bivariant Kasparov theory over a topological space and study the analogue of the bootstrap class for C -algebras over a finite topological space."],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/6001"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/61258"],["dc.language.iso","en"],["dc.notes.intern","Migrated from goescholar"],["dc.rights","Goescholar"],["dc.rights.access","openAccess"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject","topological spaces"],["dc.subject.ddc","510"],["dc.title","C∗-algebras over topological spaces: the bootstrap class"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details2010Journal Article [["dc.bibliographiccitation.firstpage","245"],["dc.bibliographiccitation.journal","New York Journal of Mathematics"],["dc.bibliographiccitation.lastpage","313"],["dc.bibliographiccitation.volume","16"],["dc.contributor.author","Emerson, Heath"],["dc.contributor.author","Meyer, Ralf"],["dc.date.accessioned","2019-07-10T08:13:40Z"],["dc.date.available","2019-07-10T08:13:40Z"],["dc.date.issued","2010"],["dc.description.abstract","We study several duality isomorphisms between equivariant bivariant K-theory groups, generalising Kasparov’s first and second Poincar´e duality isomorphisms. We use the first duality to define an equivariant generalisation of Lefschetz invariants of generalised self-maps. The second duality is related to the description of bivariant Kasparov theory for commutative C -algebras by families of elliptic pseudodifferential operators. For many groupoids, both dualities apply to a universal proper G-space. This is a basic requirement for the dual Dirac method and allows us to describe the Baum–Connes assembly map via localisation of categories."],["dc.identifier.fs","582302"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/7240"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/61305"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.orgunit","Fakultät für Mathematik und Informatik"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject.ddc","510"],["dc.title","Dualities in equivariant Kasparov theory"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details