Now showing 1 - 9 of 9
  • 2014Journal Article Erratum
    [["dc.bibliographiccitation.firstpage","882"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Neuron"],["dc.bibliographiccitation.volume","84"],["dc.contributor.author","Imig, Cordelia"],["dc.contributor.author","Min, Sang-Won"],["dc.contributor.author","Krinner, Stefanie"],["dc.contributor.author","Arancillo, Marife"],["dc.contributor.author","Rosenmund, Christian"],["dc.contributor.author","Südhof, Thomas C."],["dc.contributor.author","Rhee, JeongSeop"],["dc.contributor.author","Brose, Nils"],["dc.contributor.author","Cooper, Benjamin H."],["dc.date.accessioned","2022-03-01T11:45:21Z"],["dc.date.available","2022-03-01T11:45:21Z"],["dc.date.issued","2014"],["dc.identifier.doi","10.1016/j.neuron.2014.11.003"],["dc.identifier.pii","S0896627314010034"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103296"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-531"],["dc.relation.issn","0896-6273"],["dc.rights.uri","https://www.elsevier.com/tdm/userlicense/1.0/"],["dc.title","The Morphological and Molecular Nature of Synaptic Vesicle Priming at Presynaptic Active Zones"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","erratum_ja"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2020Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","3632"],["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","Cell Reports"],["dc.bibliographiccitation.lastpage","3643.e8"],["dc.bibliographiccitation.volume","30"],["dc.contributor.author","Maus, Lydia"],["dc.contributor.author","Lee, ChoongKu"],["dc.contributor.author","Altas, Bekir"],["dc.contributor.author","Sertel, Sinem M."],["dc.contributor.author","Weyand, Kirsten"],["dc.contributor.author","Rizzoli, Silvio O."],["dc.contributor.author","Rhee, JeongSeop"],["dc.contributor.author","Brose, Nils"],["dc.contributor.author","Imig, Cordelia"],["dc.contributor.author","Cooper, Benjamin H."],["dc.date.accessioned","2020-12-10T14:23:02Z"],["dc.date.available","2020-12-10T14:23:02Z"],["dc.date.issued","2020"],["dc.description.abstract","Although similar in molecular composition, synapses can exhibit strikingly distinct functional transmitter release and plasticity characteristics. To determine whether ultrastructural differences co-define this functional heterogeneity, we combine hippocampal organotypic slice cultures, high-pressure freezing, freeze substitution, and 3D-electron tomography to compare two functionally distinct synapses: hippocampal Schaffer collateral and mossy fiber synapses. We find that mossy fiber synapses, which exhibit a lower release probability and stronger short-term facilitation than Schaffer collateral synapses, harbor lower numbers of docked synaptic vesicles at active zones and a second pool of possibly tethered vesicles in their vicinity. Our data indicate that differences in the ratio of docked versus tethered vesicles at active zones contribute to distinct functional characteristics of synapses."],["dc.identifier.doi","10.1016/j.celrep.2020.02.083"],["dc.identifier.pmid","32187536"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/71813"],["dc.identifier.url","https://sfb1286.uni-goettingen.de/literature/publications/51"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/36"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1286: Quantitative Synaptologie"],["dc.relation","SFB 1286 | A01: Die Ultrastruktur der Synapse in Aktion"],["dc.relation.workinggroup","RG Brose"],["dc.relation.workinggroup","RG Rizzoli (Quantitative Synaptology in Space and Time)"],["dc.relation.workinggroup","RG Cooper"],["dc.rights","CC BY-NC-ND 4.0"],["dc.title","Ultrastructural Correlates of Presynaptic Functional Heterogeneity in Hippocampal Synapses"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2017Journal Article
    [["dc.bibliographiccitation.firstpage","304"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Neuron"],["dc.bibliographiccitation.lastpage","311.e4"],["dc.bibliographiccitation.volume","94"],["dc.contributor.author","Sigler, Albrecht"],["dc.contributor.author","Oh, Won Chan"],["dc.contributor.author","Imig, Cordelia"],["dc.contributor.author","Altas, Bekir"],["dc.contributor.author","Kawabe, Hiroshi"],["dc.contributor.author","Cooper, Benjamin H."],["dc.contributor.author","Kwon, Hyung-Bae"],["dc.contributor.author","Rhee, Jeong-Seop"],["dc.contributor.author","Brose, Nils"],["dc.date.accessioned","2018-03-08T09:21:30Z"],["dc.date.available","2018-03-08T09:21:30Z"],["dc.date.issued","2017"],["dc.description.abstract","Dendritic spines are the major transmitter reception compartments of glutamatergic synapses in most principal neurons of the mammalian brain and play a key role in the function of nerve cell circuits. The formation of functional spine synapses is thought to be critically dependent on presynaptic glutamatergic signaling. By analyzing CA1 pyramidal neurons in mutant hippocampal slice cultures that are essentially devoid of presynaptic transmitter release, we demonstrate that the formation and maintenance of dendrites and functional spines are independent of synaptic glutamate release."],["dc.identifier.doi","10.1016/j.neuron.2017.03.029"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/12901"],["dc.language.iso","en"],["dc.notes.intern","GRO-Li-Import"],["dc.notes.status","final"],["dc.relation.doi","10.1016/j.neuron.2017.03.029"],["dc.relation.issn","0896-6273"],["dc.title","Formation and Maintenance of Functional Spines in the Absence of Presynaptic Glutamate Release"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2013Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","82"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Neuron"],["dc.bibliographiccitation.lastpage","96"],["dc.bibliographiccitation.volume","79"],["dc.contributor.author","Lipstein, Noa"],["dc.contributor.author","Sakaba, Takeshi"],["dc.contributor.author","Cooper, Benjamin H."],["dc.contributor.author","Lin, Kun-Han"],["dc.contributor.author","Strenzke, Nicola"],["dc.contributor.author","Ashery, Uri"],["dc.contributor.author","Rhee, Jeong-Seop"],["dc.contributor.author","Taschenberger, Holger"],["dc.contributor.author","Neher, Erwin"],["dc.contributor.author","Brose, Nils"],["dc.date.accessioned","2017-09-07T11:47:39Z"],["dc.date.available","2017-09-07T11:47:39Z"],["dc.date.issued","2013"],["dc.description.abstract","Short-term synaptic plasticity, the dynamic alteration of synaptic strength during high-frequency activity, is a fundamental characteristic of all synapses. At the calyx of Held, repetitive activity eventually results in short-term synaptic depression, which is in part due to the gradual exhaustion of releasable synaptic vesicles. This is counterbalanced by Ca²⁺-dependent vesicle replenishment, but the molecular mechanisms of this replenishment are largely unknown. We studied calyces of Held in knockin mice that express a Ca²⁺-Calmodulin insensitive Munc13-1(W464R) variant of the synaptic vesicle priming protein Munc13-1. Calyces of these mice exhibit a slower rate of synaptic vesicle replenishment, aberrant short-term depression and reduced recovery from synaptic depression after high-frequency stimulation. Our data establish Munc13-1 as a major presynaptic target of Ca²⁺-Calmodulin signaling and show that the Ca²⁺-Calmodulin-Munc13-1 complex is a pivotal component of the molecular machinery that determines short-term synaptic plasticity characteristics."],["dc.identifier.doi","10.1016/j.neuron.2013.05.011"],["dc.identifier.gro","3142326"],["dc.identifier.isi","000321802000011"],["dc.identifier.pmid","23770256"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/7042"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Cell Press"],["dc.relation.issn","0896-6273"],["dc.title","Dynamic Control of Synaptic Vesicle Replenishment and Short-Term Plasticity by Ca²⁺-Calmodulin-Munc13-1 Signaling"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2017Journal Article
    [["dc.bibliographiccitation.firstpage","1143"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","The Journal of Cell Biology"],["dc.bibliographiccitation.lastpage","1161"],["dc.bibliographiccitation.volume","216"],["dc.contributor.author","Kawabe, Hiroshi"],["dc.contributor.author","Mitkovski, Miso"],["dc.contributor.author","Kaeser, Pascal S."],["dc.contributor.author","Hirrlinger, Johannes"],["dc.contributor.author","Opazo, Felipe"],["dc.contributor.author","Nestvogel, Dennis"],["dc.contributor.author","Kalla, Stefan"],["dc.contributor.author","Fejtova, Anna"],["dc.contributor.author","Verrier, Sophie E."],["dc.contributor.author","Bungers, Simon R."],["dc.contributor.author","Cooper, Benjamin H."],["dc.contributor.author","Varoqueaux, Frederique"],["dc.contributor.author","Wang, Yun"],["dc.contributor.author","Nehring, Ralf B."],["dc.contributor.author","Gundelfinger, Eckart D."],["dc.contributor.author","Rosenmund, Christian"],["dc.contributor.author","Rizzoli, Silvio O."],["dc.contributor.author","Südhof, Thomas C."],["dc.contributor.author","Rhee, Jeong-Seop"],["dc.contributor.author","Brose, Nils"],["dc.date.accessioned","2018-01-09T16:08:02Z"],["dc.date.available","2018-01-09T16:08:02Z"],["dc.date.issued","2017"],["dc.description.abstract","Presynaptic active zones (AZs) are unique subcellular structures at neuronal synapses, which contain a network of specific proteins that control synaptic vesicle (SV) tethering, priming, and fusion. Munc13s are core AZ proteins with an essential function in SV priming. In hippocampal neurons, two different Munc13s-Munc13-1 and bMunc13-2-mediate opposite forms of presynaptic short-term plasticity and thus differentially affect neuronal network characteristics. We found that most presynapses of cortical and hippocampal neurons contain only Munc13-1, whereas ∼10% contain both Munc13-1 and bMunc13-2. Whereas the presynaptic recruitment and activation of Munc13-1 depends on Rab3-interacting proteins (RIMs), we demonstrate here that bMunc13-2 is recruited to synapses by the AZ protein ELKS1, but not ELKS2, and that this recruitment determines basal SV priming and short-term plasticity. Thus, synapse-specific interactions of different Munc13 isoforms with ELKS1 or RIMs are key determinants of the molecular and functional heterogeneity of presynaptic AZs."],["dc.identifier.doi","10.1083/jcb.201606086"],["dc.identifier.pmid","28264913"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11622"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation.eissn","1540-8140"],["dc.relation.haserratum","/handle/2/11623"],["dc.title","ELKS1 localizes the synaptic vesicle priming protein bMunc13-2 to a specific subset of active zones"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2014Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","416"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Neuron"],["dc.bibliographiccitation.lastpage","431"],["dc.bibliographiccitation.volume","84"],["dc.contributor.author","Imig, Cordelia"],["dc.contributor.author","Min, Sang-Won"],["dc.contributor.author","Krinner, Stefanie"],["dc.contributor.author","Arancillo, Marife"],["dc.contributor.author","Rosenmund, Christian"],["dc.contributor.author","Südhof, Thomas C."],["dc.contributor.author","Rhee, JeongSeop"],["dc.contributor.author","Brose, Nils"],["dc.contributor.author","Cooper, Benjamin H."],["dc.date.accessioned","2017-09-07T11:45:27Z"],["dc.date.available","2017-09-07T11:45:27Z"],["dc.date.issued","2014"],["dc.description.abstract","Synaptic vesicle docking, priming, and fusion at active zones are orchestrated by a complex molecular machinery. We employed hippocampal organotypic slice cultures from mice lacking key presynaptic proteins, cryofixation, and three-dimensional electron tomography to study the mechanism of synaptic vesicle docking in the same experimental setting, with high precision, and in a near-native state. We dissected previously indistinguishable, sequential steps in synaptic vesicle active zone recruitment (tethering) and membrane attachment (docking) and found that vesicle docking requires Munc13/CAPS family priming proteins and all three neuronal SNAREs, but not Synaptotagmin-1 or Complexins. Our data indicate that membrane-attached vesicles comprise the readily releasable pool of fusion-competent vesicles and that synaptic vesicle docking, priming, and trans-SNARE complex assembly are the respective morphological, functional, and molecular manifestations of the same process, which operates downstream of vesicle tethering by active zone components."],["dc.identifier.doi","10.1016/j.neuron.2014.10.009"],["dc.identifier.gro","3142032"],["dc.identifier.isi","000344167900020"],["dc.identifier.pmid","25374362"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/3790"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1097-4199"],["dc.relation.issn","0896-6273"],["dc.title","The Morphological and Molecular Nature of Synaptic Vesicle Priming at Presynaptic Active Zones"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2015Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","638"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Journal of Cell Science"],["dc.bibliographiccitation.lastpage","644"],["dc.bibliographiccitation.volume","128"],["dc.contributor.author","Vogl, Christian"],["dc.contributor.author","Cooper, Benjamin H."],["dc.contributor.author","Neef, Jakob"],["dc.contributor.author","Wojcik, Sonja M."],["dc.contributor.author","Reim, Kerstin"],["dc.contributor.author","Reisinger, Ellen"],["dc.contributor.author","Brose, Nils"],["dc.contributor.author","Rhee, Jeong-Seop"],["dc.contributor.author","Moser, Tobias"],["dc.contributor.author","Wichmann, Carolin"],["dc.date.accessioned","2017-09-07T11:44:35Z"],["dc.date.available","2017-09-07T11:44:35Z"],["dc.date.issued","2015"],["dc.description.abstract","Ribbon synapses of cochlear inner hair cells (IHCs) employ efficient vesicle replenishment to indefatigably encode sound. In neurons, neuroendocrine and immune cells, vesicle replenishment depends on proteins of the mammalian uncoordinated 13 (Munc13, also known as Unc13) and Ca2+-dependent activator proteins for secretion (CAPS) families, which prime vesicles for exocytosis. Here, we tested whether Munc13 and CAPS proteins also regulate exocytosis in mouse IHCs by combining immunohistochemistry with auditory systems physiology and IHC patch-clamp recordings of exocytosis in mice lacking Munc13 and CAPS isoforms. Surprisingly, we did not detect Munc13 or CAPS proteins at IHC presynaptic active zones and found normal IHC exocytosis as well as auditory brainstem responses (ABRs) in Munc13 and CAPS deletion mutants. Instead, we show that otoferlin, a C-2-domain protein that is crucial for vesicular fusion and replenishment in IHCs, clusters at the plasma membrane of the presynaptic active zone. Electron tomography of otoferlin-deficient IHC synapses revealed a reduction of short tethers holding vesicles at the active zone, which might be a structural correlate of impaired vesicle priming in otoferlin-deficient IHCs. We conclude that IHCs use an unconventional priming machinery that involves otoferlin."],["dc.identifier.doi","10.1242/jcs.162099"],["dc.identifier.gro","3141957"],["dc.identifier.isi","000349786500004"],["dc.identifier.pmid","25609709"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2957"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1477-9137"],["dc.relation.issn","0021-9533"],["dc.title","Unconventional molecular regulation of synaptic vesicle replenishment in cochlear inner hair cells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2015Journal Article
    [["dc.bibliographiccitation.firstpage","516"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Cell Reports"],["dc.bibliographiccitation.lastpage","523"],["dc.bibliographiccitation.volume","13"],["dc.contributor.author","Hammer, Matthieu"],["dc.contributor.author","Krueger-Burg, Dilja"],["dc.contributor.author","Tuffy, Liam Patrick"],["dc.contributor.author","Cooper, Benjamin Hillman"],["dc.contributor.author","Taschenberger, Holger"],["dc.contributor.author","Goswami, Sarit Pati"],["dc.contributor.author","Ehrenreich, Hannelore"],["dc.contributor.author","Jonas, Peter"],["dc.contributor.author","Varoqueaux, Frederique"],["dc.contributor.author","Rhee, Jeong-Seop"],["dc.contributor.author","Brose, Nils"],["dc.date.accessioned","2017-09-07T11:46:34Z"],["dc.date.available","2017-09-07T11:46:34Z"],["dc.date.issued","2015"],["dc.description.abstract","Loss-of-function mutations in the synaptic adhesion protein Neuroligin-4 are among the most common genetic abnormalities associated with autism spectrum disorders, but little is known about the function of Neuroligin-4 and the consequences of its loss. We assessed synaptic and network characteristics in Neuroligin-4 knockout mice, focusing on the hippocampus as a model brain region with a critical role in cognition and memory, and found that Neuroligin-4 deletion causes subtle defects of the protein composition and function of GABAergic synapses in the hippocampal CA3 region. Interestingly, these subtle synaptic changes are accompanied by pronounced perturbations of γ-oscillatory network activity, which has been implicated in cognitive function and is altered in multiple psychiatric and neurodevelopmental disorders. Our data provide important insights into the mechanisms by which Neuroligin-4-dependent GABAergic synapses may contribute to autism phenotypes and indicate new strategies for therapeutic approaches."],["dc.identifier.doi","10.1016/j.celrep.2015.09.011"],["dc.identifier.gro","3150543"],["dc.identifier.pmid","26456829"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/7316"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.title","Perturbed Hippocampal Synaptic Inhibition and γ-Oscillations in a Neuroligin-4 Knockout Mouse Model of Autism"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2016Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","2239"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Cell Reports"],["dc.bibliographiccitation.lastpage","2250"],["dc.bibliographiccitation.volume","15"],["dc.contributor.author","Mortensen, Lena S."],["dc.contributor.author","Park, Silvia J.H."],["dc.contributor.author","Ke, Jiang-bin"],["dc.contributor.author","Cooper, Benjamin H."],["dc.contributor.author","Zhang, Lei"],["dc.contributor.author","Imig, Cordelia"],["dc.contributor.author","Löwel, Siegrid"],["dc.contributor.author","Reim, Kerstin"],["dc.contributor.author","Brose, Nils"],["dc.contributor.author","Demb, Jonathan B."],["dc.contributor.author","Rhee, Jeong-Seop"],["dc.contributor.author","Singer, Joshua H."],["dc.date.accessioned","2017-09-07T11:44:51Z"],["dc.date.available","2017-09-07T11:44:51Z"],["dc.date.issued","2016"],["dc.description.abstract","Complexin (Cplx) proteins modulate the core SNARE complex to regulate exocytosis. To understand the contributions of Cplx to signaling in a well-characterized neural circuit, we investigated how Cplx3, a retina-specific paralog, shapes transmission at rod bipolar (RB)-> AII amacrine cell synapses in the mouse retina. Knockout of Cplx3 strongly attenuated fast, phasic Ca2+-dependent transmission, dependent on local [Ca2+] nanodomains, but enhanced slower Ca2+-dependent transmission, dependent on global intraterminal [Ca2+] ([Ca2+](I)). Surprisingly, coordinated multivesicular release persisted at Cplx3(-/-) synapses, although its onset was slowed. Light-dependent signaling at Cplx3(-/-) RB -> AII synapses was sluggish, owing largely to increased asynchronous release at light offset. Consequently, propagation of RB output to retinal ganglion cells was suppressed dramatically. Our study links Cplx3 expression with synapse and circuit function in a specific retinal pathway and reveals a role for asynchronous release in circuit gain control."],["dc.identifier.doi","10.1016/j.celrep.2016.05.012"],["dc.identifier.gro","3141669"],["dc.identifier.isi","000377776300014"],["dc.identifier.pmid","27239031"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/13471"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/7452"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","2211-1247"],["dc.rights","CC BY-NC-ND 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-nd/4.0"],["dc.title","Complexin 3 Increases the Fidelity of Signaling in a Retinal Circuit by Regulating Exocytosis at Ribbon Synapses"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS