Now showing 1 - 4 of 4
  • 2008Journal Article
    [["dc.bibliographiccitation.firstpage","129"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Homology, Homotopy and Applications"],["dc.bibliographiccitation.lastpage","180"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Bunke, Ulrich"],["dc.contributor.author","Schick, Thomas"],["dc.contributor.author","Spitzweck, Markus"],["dc.date.accessioned","2017-09-07T11:43:11Z"],["dc.date.available","2017-09-07T11:43:11Z"],["dc.date.issued","2008"],["dc.identifier.doi","10.4310/HHA.2008.v10.n1.a6"],["dc.identifier.gro","3146664"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4452"],["dc.language.iso","en"],["dc.notes.intern","mathe"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.relation.issn","1532-0073"],["dc.title","Inertia and delocalized twisted cohomology"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2008Book Chapter
    [["dc.bibliographiccitation.firstpage","227"],["dc.bibliographiccitation.lastpage","347"],["dc.contributor.author","Bunke, Ulrich"],["dc.contributor.author","Schick, Thomas"],["dc.contributor.author","Spitzweck, Markus"],["dc.contributor.author","Thom, Andreas"],["dc.contributor.editor","Cortiñas, Guillermo"],["dc.contributor.editor","Cuntz, Joachim"],["dc.contributor.editor","Karoubi, Max"],["dc.contributor.editor","Nest, Ryszard"],["dc.contributor.editor","Weibel, Charles A."],["dc.date.accessioned","2017-09-07T11:43:06Z"],["dc.date.available","2017-09-07T11:43:06Z"],["dc.date.issued","2008"],["dc.description.abstract","We extend Pontrjagin duality from topological abelian groups to certain locally compact group stacks. To this end we develop a sheaf theory on the big site of topological spaces S in order to prove that the sheaves ExtiShAbS(G,T), i = 1, 2, vanish, where G is the sheaf represented by a locally compact abelian group and T is the circle. As an application of the theory we interpret topological T-duality of principal Tn-bundles in terms of Pontrjagin duality of abelian group stacks."],["dc.identifier.doi","10.4171/060-1/10"],["dc.identifier.gro","3146659"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4447"],["dc.language.iso","en"],["dc.notes.intern","mathe"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.publisher","European Mathematical Society"],["dc.publisher.place","Zürich"],["dc.relation.eisbn","978-3-03719-560-4"],["dc.relation.isbn","978-3-03719-060-9"],["dc.relation.ispartof","$K$-theory and noncommutative geometry"],["dc.title","Duality for topological abelian group stacks and ehBduality"],["dc.type","book_chapter"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2011Journal Article
    [["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.issue","337"],["dc.bibliographiccitation.journal","Astérisque"],["dc.bibliographiccitation.lastpage","+"],["dc.contributor.author","Bunke, Ulrich"],["dc.contributor.author","Schick, Thomas"],["dc.contributor.author","Spitzweck, Markus"],["dc.date.accessioned","2018-11-07T09:00:10Z"],["dc.date.available","2018-11-07T09:00:10Z"],["dc.date.issued","2011"],["dc.description.abstract","Using the differentiable structure, twisted 2-periodic de Rham cohomology is well known, and showing up as the target of Chern characters for twisted K-theory. The main motivation of this work is a topological interpretation of two-periodic twisted de Rham cohomology which is generalizable to arbitrary topological spaces and at the same time to arbitrary coefficients. To this end we develop a sheaf theory in the context of locally compact topological stacks with emphasis on: the construction of the sheaf theory operations in unbounded derived categories elements of Verdier duality and integration. The main result is the construction of a functorial periodization associated to a U(1)-gerbe. As an application we verify the T-duality isomorphism in periodic twisted cohomology and in periodic twisted orbispace cohomology."],["dc.format.extent","vi+134"],["dc.identifier.gro","3146650"],["dc.identifier.isi","000309492100001"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/24088"],["dc.notes.intern","mathe"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Soc Mathematique France"],["dc.relation.issn","0303-1179"],["dc.title","Periodic twisted cohomology and hBduality"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details WOS
  • 2007Journal Article
    [["dc.bibliographiccitation.firstpage","1007"],["dc.bibliographiccitation.journal","Algebraic & Geometric Topology"],["dc.bibliographiccitation.lastpage","1062"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Bunke, Ulrich"],["dc.contributor.author","Schick, Thomas"],["dc.contributor.author","Spitzweck, Markus"],["dc.date.accessioned","2017-09-07T11:47:09Z"],["dc.date.available","2017-09-07T11:47:09Z"],["dc.date.issued","2007"],["dc.description.abstract","In this paper we give a sheaf theory interpretation of the twisted cohomology of manifolds. To this end we develop a sheaf theory on smooth stacks. The derived push-forward of the constant sheaf with value R along the structure map of a U(1) gerbe over a smooth manifold X is an object of the derived category of sheaves on X. Our main result shows that it is isomorphic in this derived category to a sheaf of twisted de Rham complexes."],["dc.identifier.doi","10.2140/agt.2007.7.1007"],["dc.identifier.gro","3146668"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4458"],["dc.language.iso","en"],["dc.notes.intern","mathe"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.relation.issn","1472-2747"],["dc.title","Sheaf theory for stacks in manifolds and twisted cohomology for ^1hBHgerbes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]
    Details DOI