Options
Wilting, Jörg
Loading...
Preferred name
Wilting, Jörg
Official Name
Wilting, Jörg
Alternative Name
Wilting, Joerg
Wilting, J.
Now showing 1 - 10 of 28
2022-09-15Journal Article Research Paper [["dc.bibliographiccitation.artnumber","157"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Cell & Bioscience"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Wilting, Jörg"],["dc.contributor.author","Becker, Jürgen"],["dc.date.accessioned","2022-09-19T07:17:59Z"],["dc.date.available","2022-09-19T07:17:59Z"],["dc.date.issued","2022-09-15"],["dc.date.updated","2022-09-18T03:12:12Z"],["dc.description.abstract","Abstract\r\n Almost 400 years after the (re)discovery of the lymphatic vascular system (LVS) by Gaspare Aselli (Asellius G. De lactibus, sive lacteis venis, quarto vasorum mesaraicorum genere, novo invento Gasparis Asellii Cremo. Dissertatio. (MDCXXIIX), Milan; 1628.), structure, function, development and evolution of this so-called ‘second’ vascular system are still enigmatic. Interest in the LVS was low because it was (and is) hardly visible, and its diseases are not as life-threatening as those of the blood vascular system. It is not uncommon for patients with lymphedema to be told that yes, they can live with it. Usually, the functions of the LVS are discussed in terms of fluid homeostasis, uptake of chylomicrons from the gut, and immune cell circulation. However, the broad molecular equipment of lymphatic endothelial cells suggests that they possess many more functions, which are also reflected in the pathophysiology of the system. With some specific exceptions, lymphatics develop in all organs. Although basic structure and function are the same regardless their position in the body wall or the internal organs, there are important site-specific characteristics. We discuss common structure and function of lymphatics; and point to important functions for hyaluronan turn-over, salt balance, coagulation, extracellular matrix production, adipose tissue development and potential appetite regulation, and the influence of hypoxia on the regulation of these functions. Differences with respect to the embryonic origin and molecular equipment between somatic and splanchnic lymphatics are discussed with a side-view on the phylogeny of the LVS. The functions of the lymphatic vasculature are much broader than generally thought, and lymphatic research will have many interesting and surprising aspects to offer in the future."],["dc.identifier.citation","Cell & Bioscience. 2022 Sep 15;12(1):157"],["dc.identifier.doi","10.1186/s13578-022-00898-0"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/114251"],["dc.language.iso","en"],["dc.relation.orgunit","Universitätsmedizin Göttingen"],["dc.rights","CC BY 4.0"],["dc.rights.holder","The Author(s)"],["dc.subject","Initial lymphatics"],["dc.subject","Lymphatic collector"],["dc.subject","Lymphangiogenesis"],["dc.subject","Circulating endothelial precursor cells"],["dc.subject","Pacemaker cell"],["dc.subject","Smooth muscle cell origin"],["dc.subject","Sphingosine-1-phosphate"],["dc.subject","Melanocortin-2 receptor accessory protein-2"],["dc.title","The lymphatic vascular system: much more than just a sewer"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2019Journal Article [["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.journal","Journal of Cellular and Molecular Medicine"],["dc.bibliographiccitation.lastpage","9"],["dc.contributor.author","Malik, Gesa"],["dc.contributor.author","Wilting, Jörg"],["dc.contributor.author","Hess, Clemens Friedrich"],["dc.contributor.author","Ramadori, Giuliano"],["dc.contributor.author","Malik, Ihtzaz Ahmed"],["dc.date.accessioned","2019-07-09T11:50:04Z"],["dc.date.available","2019-07-09T11:50:04Z"],["dc.date.issued","2019"],["dc.description.abstract","The mechanisms of radiation-induced liver damage are poorly understood. We investigated if tumour necrosis factor (TNF)-α acts synergistically with irradiation, and how its activity is influenced by platelet endothelial cell adhesion molecule-1 (PECAM-1). We studied murine models of selective single-dose (25 Gy) liver irradiation with and without TNF-α application (2 μg/mouse; i.p.). In serum of wild-type (wt)-mice, irradiation induced a mild increase in hepatic damage marker aspartate aminotransferase (AST) in comparison to sham-irradiated controls. AST levels further increased in mice treated with both irradiation and TNF-α. Accordingly, elevated numbers of leucocytes and increased expression of the macrophage marker CD68 were observed in the liver of these mice. In parallel to hepatic damage, a consecutive decrease in expression of hepatic PECAM-1 was found in mice that received radiation or TNF-α treatment alone. The combination of radiation and TNF-α induced an additional significant decline of PECAM-1. Furthermore, increased expression of hepatic lipocalin-2 (LCN-2), a hepatoprotective protein, was detected at mRNA and protein levels after irradiation or TNF-α treatment alone and the combination of both. Signal transducer and activator of transcription-3 (STAT-3) seems to be involved in the signalling cascade. To study the involvement of PECAM-1 in hepatic damage more deeply, the liver of both wt- and PECAM-1-knock-out-mice were selectively irradiated (25 Gy). Thereby, ko-mice showed higher liver damage as revealed by elevated AST levels, but also increased hepatoprotective LCN-2 expression. Our studies show that TNF-α has a pivotal role in radiation-induced hepatic damage. It acts in concert with irradiation and its activity is modulated by PECAM-1, which mediates pro- and anti-inflammatory signalling."],["dc.identifier.doi","10.1111/jcmm.14224"],["dc.identifier.pmid","30761739"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15851"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59695"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","1582-4934"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","610"],["dc.title","PECAM-1 modulates liver damage induced by synergistic effects of TNF-α and irradiation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2007Journal Article [["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.issue","105"],["dc.bibliographiccitation.journal","BMC cancer"],["dc.bibliographiccitation.lastpage","17"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Norgall, Susanne"],["dc.contributor.author","Papoutsi, Maria"],["dc.contributor.author","Rössler, Jochen"],["dc.contributor.author","Schweigerer, Lothar"],["dc.contributor.author","Wilting, Jörg"],["dc.contributor.author","Weich, Herbert A."],["dc.date.accessioned","2019-07-10T08:13:00Z"],["dc.date.available","2019-07-10T08:13:00Z"],["dc.date.issued","2007"],["dc.description.abstract","Background: Lymphangiomas are neoplasias of childhood. Their etiology is unknown and a causal therapy does not exist. The recent discovery of highly specific markers for lymphatic endothelial cells (LECs) has permitted their isolation and characterization, but expression levels and stability of molecular markers on LECs from healthy and lymphangioma tissues have not been studied yet. We addressed this problem by profiling LECs from normal dermis and two children suffering from lymphangioma, and also compared them with blood endothelial cells (BECs) from umbilical vein, aorta and myometrial microvessels. Methods: Lymphangioma tissue samples were obtained from two young patients suffering from lymphangioma in the axillary and upper arm region. Initially isolated with anti-CD31 (PECAM-1) antibodies, the cells were separated by FACS sorting and magnetic beads using anti-podoplanin and/or LYVE-1 antibodies. Characterization was performed by FACS analysis, immunofluorescence staining, ELISA and micro-array gene analysis. Results: LECs from foreskin and lymphangioma had an almost identical pattern of lymphendothelial markers such as podoplanin, Prox1, reelin, cMaf and integrin-a1 and -a9. However, LYVE-1 was down-regulated and VEGFR-2 and R-3 were up-regulated in lymphangiomas. Prox1 was constantly expressed in LECs but not in any of the BECs. Conclusion: LECs from different sources express slightly variable molecular markers, but can always be distinguished from BECs by their Prox1 expression. High levels of VEGFR-3 and -2 seem to contribute to the etiology of lymphangiomas."],["dc.identifier.fs","171198"],["dc.identifier.ppn","560267541"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/4366"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/61096"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.orgunit","Universitätsmedizin Göttingen"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject.ddc","610"],["dc.title","Elevated expression of VEGFR-3 in lymphatic endothelial cells from lymphangiomas"],["dc.title.alternative","Research article"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details2011Journal Article [["dc.bibliographiccitation.firstpage","163"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Angiogenesis"],["dc.bibliographiccitation.lastpage","172"],["dc.bibliographiccitation.volume","14"],["dc.contributor.author","Hemmen, Katherina"],["dc.contributor.author","Reinl, Tobias"],["dc.contributor.author","Buttler, Kerstin"],["dc.contributor.author","Behler, Friederike"],["dc.contributor.author","Dieken, Hauke"],["dc.contributor.author","Jaensch, Lothar"],["dc.contributor.author","Wilting, Joerg"],["dc.contributor.author","Weich, Herbert A."],["dc.date.accessioned","2018-11-07T08:56:20Z"],["dc.date.available","2018-11-07T08:56:20Z"],["dc.date.issued","2011"],["dc.description.abstract","Recently, we isolated and characterized resident endothelial progenitor cells from the lungs of adult mice. These cells have a high proliferation potential, are not transformed and can differentiate into blood- and lymph-vascular endothelial cells under in vitro and in vivo conditions. Here we studied the secretome of these cells by nanoflow liquid chromatographic mass spectrometry (LC-MS). For analysis, 3-day conditioned serum-free media were used. We found 133 proteins belonging to the categories of membrane-bound or secreted proteins. Thereby, several of the membrane-bound proteins also existed as released variants. Thirty-five proteins from this group are well known as endothelial cell- or angiogenesis-related proteins. The MS analysis of the secretome was supplemented and confirmed by fluorescence activated cell sorting analyses, ELISA measurements and immunocytological studies of selected proteins. The secretome data presented in this study provides a platform for the in-depth analysis of endothelial progenitor cells and characterizes potential cellular markers and signaling components in hem- and lymphangiogeneis."],["dc.identifier.doi","10.1007/s10456-011-9200-x"],["dc.identifier.isi","000291038200006"],["dc.identifier.pmid","21234671"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/23121"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.relation.issn","0969-6970"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","High-resolution mass spectrometric analysis of the secretome from mouse lung endothelial progenitor cells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2013-12-01Journal Article [["dc.bibliographiccitation.firstpage","2302"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","Oncotarget"],["dc.bibliographiccitation.lastpage","2316"],["dc.bibliographiccitation.volume","4"],["dc.contributor.author","Exertier, Prisca"],["dc.contributor.author","Javerzat, Sophie"],["dc.contributor.author","Wang, Baigang"],["dc.contributor.author","Franco, Mélanie"],["dc.contributor.author","Herbert, John"],["dc.contributor.author","Platonova, Natalia"],["dc.contributor.author","Winandy, Marie"],["dc.contributor.author","Pujol, Nadège"],["dc.contributor.author","Nivelles, Olivier"],["dc.contributor.author","Ormenese, Sandra"],["dc.contributor.author","Godard, Virginie"],["dc.contributor.author","Becker, Jürgen"],["dc.contributor.author","Bicknell, Roy"],["dc.contributor.author","Pineau, Raphael"],["dc.contributor.author","Wilting, Jörg"],["dc.contributor.author","Bikfalvi, Andreas"],["dc.contributor.author","Hagedorn, Martin"],["dc.date.accessioned","2019-07-10T08:11:46Z"],["dc.date.available","2019-07-10T08:11:46Z"],["dc.date.issued","2013-12-01"],["dc.description.abstract","Kinesin motor proteins exert essential cellular functions in all eukaryotes. They control mitosis, migration and intracellular transport through interaction with microtubules. Small molecule inhibitors of the mitotic kinesin KiF11/Eg5 are a promising new class of anti-neoplastic agents currently evaluated in clinical cancer trials for solid tumors and hematological malignancies. Here we report induction of Eg5 and four other mitotic kinesins including KIF20A/Mklp2 upon stimulation of in vivo angiogenesis with vascular endothelial growth factor-A (VEGF-A). Expression analyses indicate up-regulation of several kinesin-encoding genes predominantly in lymphoblasts and endothelial cells. Chemical blockade of Eg5 inhibits endothelial cell proliferation and migration in vitro. Mitosis-independent vascular outgrowth in aortic ring cultures is strongly impaired after Eg5 or Mklp2 protein inhibition. In vivo, interfering with KIF11/Eg5 function causes developmental and vascular defects in zebrafish and chick embryos and potent inhibition of tumor angiogenesis in experimental tumor models. Besides blocking tumor cell proliferation, impairing endothelial function is a novel mechanism of action of kinesin inhibitors."],["dc.identifier.fs","603240"],["dc.identifier.pmid","24327603"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/10759"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/60793"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","1949-2553"],["dc.relation.orgunit","Universitätsmedizin Göttingen"],["dc.rights","CC BY 3.0"],["dc.rights.uri","http://creativecommons.org/licenses/by/3.0"],["dc.title","Impaired angiogenesis and tumor development by inhibition of the mitotic kinesin Eg5."],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details PMID PMC2017Journal Article [["dc.bibliographiccitation.firstpage","7347"],["dc.bibliographiccitation.issue","41"],["dc.bibliographiccitation.journal","World Journal of Gastroenterology"],["dc.bibliographiccitation.lastpage","7358"],["dc.bibliographiccitation.volume","23"],["dc.contributor.author","Malik, Ihtzaz Ahmed"],["dc.contributor.author","Wilting, Jörg"],["dc.contributor.author","Ramadori, Giuliano"],["dc.contributor.author","Naz, Naila"],["dc.date.accessioned","2019-07-09T11:44:36Z"],["dc.date.available","2019-07-09T11:44:36Z"],["dc.date.issued","2017"],["dc.description.abstract","AIM To studied iron metabolism in liver, spleen, and serum after acute liver-damage, in relation to surrogate markers for liver-damage and repair. METHODS Rats received intraperitoneal injection of the hepatotoxin thioacetamide (TAA), and were sacrificed regularly between 1 and 96 h thereafter. Serum levels of transaminases and iron were measured using conventional laboratory assays. Liver tissue was used for conventional histology, immunohistology, and iron staining. The expression of acute-phase cytokines, ferritin light chain (FTL), and ferritin heavy chain (FTH) was investigated in the liver by qRT-PCR. Western blotting was used to investigate FTL and FTH in liver tissue and serum. Liver and spleen tissue was also used to determine iron concentrations. RESULTS After a short initial decrease, iron serum concentrations increased in parallel with serum transaminase (aspartate aminotransferase and alanine aminotransferase) levels, which reached a maximum at 48 h, and decreased thereafter. Similarly, after 48 h a significant increase in FTL, and after 72h in FTH was detected in serum. While earliest morphological signs of inflammation in liver were visible after 6 h, increased expression of the two acute-phase cytokines IFN-γ (1h) and IL-1β (3h) was detectable earlier, with maximum values after 12-24 h. Iron concentrations in liver tissue increased steadily between 1 h and 48 h, and remained high at 96 h. In contrast, spleen iron concentrations remained unchanged until 48 h, and increased mildly thereafter (96 h). Although tissue iron staining was negative, hepatic FTL and FTH protein levels were strongly elevated. Our results reveal effects on hepatic iron concentrations after direct liver injury by TAA. The increase of liver iron concentrations may be due to the uptake of a significant proportion of the metal by healthy hepatocytes, and only to a minor extent by macrophages, as spleen iron concentrations do not increase in parallel. The temporary increase of iron, FTH and transaminases in serum is obviously due to their release by damaged hepatocytes. CONCLUSION Increased liver iron levels may be the consequence of hepatocyte damage. Iron released into serum by damaged hepatocytes is obviously transported back and stored via ferritins."],["dc.identifier.doi","10.3748/wjg.v23.i41.7347"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14835"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59046"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","2219-2840"],["dc.rights","CC BY-NC 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc/4.0"],["dc.subject.ddc","610"],["dc.title","Reabsorption of iron into acutely damaged rat liver: A role for ferritins"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2017Journal Article [["dc.bibliographiccitation.firstpage","3259"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Oncotarget"],["dc.bibliographiccitation.lastpage","3273"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Draeger, Julia"],["dc.contributor.author","Simon-Keller, Katja"],["dc.contributor.author","Pukrop, Tobias"],["dc.contributor.author","Klemm, Florian"],["dc.contributor.author","Wilting, Joerg"],["dc.contributor.author","Sticht, Carsten"],["dc.contributor.author","Dittmann, Kai"],["dc.contributor.author","Schulz, Matthias"],["dc.contributor.author","Leuschner, Ivo"],["dc.contributor.author","Marx, Alexander"],["dc.contributor.author","Hahn, Heidi"],["dc.date.accessioned","2018-11-07T10:28:26Z"],["dc.date.available","2018-11-07T10:28:26Z"],["dc.date.issued","2017"],["dc.description.abstract","Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children and show characteristics of skeletal muscle differentiation. The two major RMS subtypes in children are alveolar (ARMS) and embryonal RMS (ERMS). We demonstrate that approximately 50% of ARMS and ERMS overexpress the LEF1/TCF transcription factor LEF1 when compared to normal skeletal muscle and that LEF1 can restrain aggressiveness especially of ARMS cells. LEF1 knockdown experiments in cell lines reveal that depending on the cellular context, LEF1 can induce pro-apoptotic signals. LEF1 can also suppress proliferation, migration and invasiveness of RMS cells both in vitro and in vivo. Furthermore, LEF1 can induce myodifferentiation of the tumor cells. This may involve regulation of other LEF1/TCF factors i.e. TCF1, whereas beta-catenin activity plays a subordinate role. Together these data suggest that LEF1 rather has tumor suppressive functions and attenuates aggressiveness in a subset of RMS."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2016"],["dc.identifier.doi","10.18632/oncotarget.13887"],["dc.identifier.isi","000391506300114"],["dc.identifier.pmid","27965462"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14022"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/43418"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Impact Journals Llc"],["dc.relation.issn","1949-2553"],["dc.rights","CC BY 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/3.0"],["dc.title","LEF1 reduces tumor progression and induces myodifferentiation in a subset of rhabdomyosarcoma"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2018Journal Article [["dc.bibliographiccitation.artnumber","e0200343"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","PLOS ONE"],["dc.bibliographiccitation.volume","13"],["dc.contributor.author","Blesinger, Hannah"],["dc.contributor.author","Kaulfuß, Silke"],["dc.contributor.author","Aung, Thiha"],["dc.contributor.author","Schwoch, Sonja"],["dc.contributor.author","Prantl, Lukas"],["dc.contributor.author","Rößler, Jochen"],["dc.contributor.author","Wilting, Jörg"],["dc.contributor.author","Becker, Jürgen"],["dc.date.accessioned","2019-07-09T11:45:49Z"],["dc.date.available","2019-07-09T11:45:49Z"],["dc.date.issued","2018"],["dc.description.abstract","Lymphatic malformations (LM) are characterized by the overgrowth of lymphatic vessels during pre- and postnatal development. Macrocystic, microcystic and combined forms of LM are known. The cysts are lined by lymphatic endothelial cells (LECs). Resection and sclerotherapy are the most common treatment methods. Recent studies performed on LM specimens in the United States of America have identified activating mutations in the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) gene in LM. However, whole tissue but not isolated cell types were studied. Here, we studied LM tissues resected at the University Hospitals Freiburg and Regensburg, Germany. We isolated LECs and fibroblasts separately, and sequenced the commonly affected exons 8, 10, and 21 of the PIK3CA gene. We confirm typical monoallelic mutations in 4 out of 6 LM-derived LEC lines, and describe two new mutations i.) in exon 10 (c.1636C>A; p.Gln546Lys), and ii.) a 3bp in-frame deletion of GAA (Glu109del). LM-derived fibroblasts did not possess such mutations, showing cell-type specificity of the gene defect. High activity of the PIK3CA-AKT- mTOR pathway was demonstrated by hyperphosphorylation of AKT-Ser473 in all LM-derived LECs (including the ones with newly identified mutations), as compared to normal LECs. Additionally, hyperphosphorylation of ERK was seen in all LM-derived LECs, except for the one with Glu109del. In vitro, the small molecule kinase inhibitors Buparlisib/BKM-120, Wortmannin, and Ly294002, (all inhibitors of PIK3CA), CAL-101 (inhibitor of PIK3CD), MK-2206 (AKT inhibitor), Sorafenib (multiple kinases inhibitor), and rapamycin (mTOR inhibitor) significantly blocked proliferation of LM-derived LECs in a concentration-dependent manner, but also blocked proliferation of normal LECs. However, MK-2206 appeared to be more specific for mutated LECs, except in case of Glu109 deletion. In sum, children that are, or will be, treated with kinase inhibitors must be monitored closely."],["dc.identifier.doi","10.1371/journal.pone.0200343"],["dc.identifier.pmid","29985963"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15320"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59313"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","1932-6203"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject.ddc","610"],["dc.title","PIK3CA mutations are specifically localized to lymphatic endothelial cells of lymphatic malformations"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2010Journal Article [["dc.bibliographiccitation.artnumber","91"],["dc.bibliographiccitation.journal","BMC Developmental Biology"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Wang, B."],["dc.contributor.author","Pu, Qin"],["dc.contributor.author","De, Raja"],["dc.contributor.author","Patel, Ketan"],["dc.contributor.author","Christ, Bodo"],["dc.contributor.author","Wilting, Joerg"],["dc.contributor.author","Huang, Ruijin"],["dc.date.accessioned","2018-11-07T08:40:14Z"],["dc.date.available","2018-11-07T08:40:14Z"],["dc.date.issued","2010"],["dc.description.abstract","Background: Cells of the epithelially organised dermomyotome are traditionally believed to give rise to skeletal muscle and dermis. We have previously shown that the dermomyotome can undergo epithelial-mesenchymal transition (EMT) and give rise to chondrogenic cells, which go on to form the scapula blade in birds. At present we have little understanding regarding the issue of when the chondrogenic fate of dermomyotomal cells is determined. Using quail-chick grafting experiments, we investigated whether scapula precursor cells are committed to a chondrogenic fate while in an epithelial state or whether commitment is established after EMT. Results: We show that the hypaxial dermomyotome, which normally forms the scapula, does not generate cartilaginous tissue after it is grafted to the epaxial domain. In contrast engraftment of the epaxial dermomyotome to the hypaxial domain gives rise to scapula-like cartilage. However, the hypaxial sub-ectodermal mesenchyme (SEM), which originates from the hypaxial dermomyotome after EMT, generates cartilaginous elements in the epaxial domain, whereas in reciprocal grafting experiments, the epaxial SEM cannot form cartilage in the hypaxial domain. Conclusions: We suggest that the epithelial cells of the dermomyotome are not committed to the chondrogenic lineage. Commitment to this lineage occurs after it has undergone EMT to form the sub-ectodermal mesenchyme."],["dc.description.sponsorship","Deutsche Forschungsgemeinschaft [Hu729/2]; Baden-Wuttemberg"],["dc.identifier.doi","10.1186/1471-213X-10-91"],["dc.identifier.isi","000282740900001"],["dc.identifier.pmid","20807426"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/6023"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/19179"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Biomed Central Ltd"],["dc.relation.issn","1471-213X"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Commitment of chondrogenic precursors of the avian scapula takes place after epithelial-mesenchymal transition of the dermomyotome"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2017Journal Article [["dc.bibliographiccitation.firstpage","1057"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Cellular and Molecular Life Sciences"],["dc.bibliographiccitation.lastpage","1070"],["dc.bibliographiccitation.volume","75"],["dc.contributor.author","Becker, Jürgen"],["dc.contributor.author","Wilting, Jörg"],["dc.date.accessioned","2020-12-10T14:07:53Z"],["dc.date.available","2020-12-10T14:07:53Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1007/s00018-017-2685-8"],["dc.identifier.eissn","1420-9071"],["dc.identifier.issn","1420-682X"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15539"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/70321"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","Merged from goescholar"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","WNT signaling, the development of the sympathoadrenal–paraganglionic system and neuroblastoma"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI
- «
- 1 (current)
- 2
- 3
- »