Options
Belov, Vladimir N.
Loading...
Preferred name
Belov, Vladimir N.
Official Name
Belov, Vladimir N.
Alternative Name
Belov, V. N.
Belov, Vladimir
Belov, V.
Now showing 1 - 4 of 4
2012Journal Article [["dc.bibliographiccitation.artnumber","7"],["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Optical Nanoscopy"],["dc.bibliographiccitation.lastpage","7"],["dc.bibliographiccitation.volume","1"],["dc.contributor.author","Wurm, Christian Andreas"],["dc.contributor.author","Kolmakov, Kirill"],["dc.contributor.author","Göttfert, Fabian"],["dc.contributor.author","Ta, Haisen"],["dc.contributor.author","Bossi, Mariano"],["dc.contributor.author","Schill, Heiko"],["dc.contributor.author","Berning, Sebastian"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Donnert, Gerald"],["dc.contributor.author","Belov, Vladimir N."],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2017-09-07T11:53:03Z"],["dc.date.available","2017-09-07T11:53:03Z"],["dc.date.issued","2012"],["dc.description.abstract","In optical microscopy, most red-emitting dyes provide only moderate performance due to unspecific binding, poor labeling efficiency, and insufficient brightness. Here we report on four novel red fluororescent dyes, including the first phosphorylated dye, created by combining a rigidized rhodamine backbone with various polar groups. They exhibit large fluorescence quantum yields and improved NHS ester stability. While these fluorophores are highly suitable for fluorescence microscopy in general, they excel in stimulated emission depletion (STED) microscopy, providing < 25 nm spatial resolution in raw images of cells."],["dc.identifier.doi","10.1186/2192-2853-1-7"],["dc.identifier.fs","593636"],["dc.identifier.gro","3145019"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/8898"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2709"],["dc.language.iso","en"],["dc.notes.intern","Crossref Import"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation.issn","2192-2853"],["dc.relation.orgunit","Fakultät für Physik"],["dc.rights","Goescholar"],["dc.rights.uri","https://goedoc.uni-goettingen.de/licenses"],["dc.title","Novel red fluorophores with superior performance in STED microscopy"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2013Journal Article Research Paper [["dc.bibliographiccitation.artnumber","e78745"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","PLOS ONE"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Stagge, Franziska"],["dc.contributor.author","Mitronova, Gyuzel Yu"],["dc.contributor.author","Belov, Vladimir N."],["dc.contributor.author","Wurm, Christian Andreas"],["dc.contributor.author","Jakobs, Stefan"],["dc.date.accessioned","2017-09-07T11:47:06Z"],["dc.date.available","2017-09-07T11:47:06Z"],["dc.date.issued","2013"],["dc.description.abstract","Fluorescence microscopy of the localization and the spatial and temporal dynamics of specifically labelled proteins is an indispensable tool in cell biology. Besides fluorescent proteins as tags, tag-mediated labelling utilizing self-labelling proteins as the SNAP-, CLIP-, or the Halo-tag are widely used, flexible labelling systems relying on exogenously supplied fluorophores. Unfortunately, labelling of live budding yeast cells proved to be challenging with these approaches because of the limited accessibility of the cell interior to the dyes. In this study we developed a fast and reliable electroporation-based labelling protocol for living budding yeast cells expressing SNAP-, CLIP-, or Halo-tagged fusion proteins. For the Halo-tag, we demonstrate that it is crucial to use the 6'-carboxy isomers and not the 5'-carboxy isomers of important dyes to ensure cell viability. We report on a simple rule for the analysis of H-1 NMR spectra to discriminate between 6'- and 5'-carboxy isomers of fluorescein and rhodamine derivatives. We demonstrate the usability of the labelling protocol by imaging yeast cells with STED super-resolution microscopy and dual colour live cell microscopy. The large number of available fluorophores for these self-labelling proteins and the simplicity of the protocol described here expands the available toolbox for the model organism Saccharomyces cerevisiae."],["dc.identifier.doi","10.1371/journal.pone.0078745"],["dc.identifier.gro","3142268"],["dc.identifier.isi","000326155400102"],["dc.identifier.pmid","24205303"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/9435"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/6398"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1932-6203"],["dc.rights","CC BY 2.5"],["dc.rights.uri","https://creativecommons.org/licenses/by/2.5"],["dc.title","Snap-, CLIP- and Halo-Tag Labelling of Budding Yeast Cells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2016Journal Article Research Paper [["dc.bibliographiccitation.artnumber","26725"],["dc.bibliographiccitation.journal","Scientific Reports"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Sidenstein, Sven C."],["dc.contributor.author","D'Este, Elisa"],["dc.contributor.author","Böhm, Marvin J."],["dc.contributor.author","Danzl, Johann G."],["dc.contributor.author","Belov, Vladimir N."],["dc.contributor.author","Hell, Stefan"],["dc.date.accessioned","2017-09-07T11:44:54Z"],["dc.date.available","2017-09-07T11:44:54Z"],["dc.date.issued","2016"],["dc.description.abstract","Superresolution fluorescence microscopy of multiple fluorophores still requires development. Here we present simultaneous three-colour stimulated emission depletion (STED) nanoscopy relying on a single STED beam at 620 nm. Toggling the STED beam between two or more power levels (\"multilevelSTED\") optimizes resolution and contrast in all colour channels, which are intrinsically co-aligned and well separated. Three-colour recording is demonstrated by imaging the nanoscale cytoskeletal organization in cultured hippocampal neurons. The down to similar to 35 nm resolution identified periodic actin/betaII spectrin lattices along dendrites and spines; however, at presynaptic and postsynaptic sites, these patterns were found to be absent. Both our multicolour scheme and the 620 nm STED line should be attractive for routine STED microscopy applications."],["dc.identifier.doi","10.1038/srep26725"],["dc.identifier.gro","3141682"],["dc.identifier.isi","000376500200002"],["dc.identifier.pmid","27220554"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/13375"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8850"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","2045-2322"],["dc.rights.access","openAccess"],["dc.title","Multicolour Multilevel STED nanoscopy of Actin/Spectrin Organization at Synapses"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2017Journal Article [["dc.bibliographiccitation.artnumber","12319"],["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.journal","Scientific Reports"],["dc.bibliographiccitation.lastpage","15"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Mitronova, Gyuzel Y."],["dc.contributor.author","Lukinavičius, Gražvydas"],["dc.contributor.author","Butkevich, Alexey N."],["dc.contributor.author","Kohl, Tobias"],["dc.contributor.author","Belov, Vladimir N."],["dc.contributor.author","Lehnart, Stephan E."],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2018-01-17T13:30:31Z"],["dc.date.available","2018-01-17T13:30:31Z"],["dc.date.issued","2017"],["dc.description.abstract","Visualization of the G-protein coupled receptor (GPCR) is of great importance for studying its function in a native cell. We have synthesized a series of red-emitting fluorescent probes targeting β-adrenergic receptor (βAR) that are compatible with confocal and Stimulated Emission Depletion (STED) microscopy as well as with Time-Resolved Fluorescence Resonance Energy Transfer (TR-FRET) binding assay in living cells. The probe based on the agonist BI-167107 and fluorescent dye KK114 demonstrates nanomolar binding affinity and up to nine-fold β2AR selectivity over β1AR. Carazolol-derived probes are fluorogenic and allow no-wash imaging experiments. STED microscopy of β2ARs stained at the native expression level on pancreatic CAPAN cells provides two-fold improvement in lateral optical resolution over confocal mode and reveals the formation of receptor microdomains. These probes retain their functional (agonist or antagonist) properties, allowing simultaneous modulation of cyclic adenosine monophosphate (cAMP) levels and receptor internalization as well as imaging receptor localization."],["dc.identifier.doi","10.1038/s41598-017-12468-3"],["dc.identifier.pmid","28951558"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14939"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11716"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation.eissn","2045-2322"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","High-Affinity Functional Fluorescent Ligands for Human β-Adrenoceptors"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC