Now showing 1 - 2 of 2
  • 2006Journal Article
    [["dc.bibliographiccitation.firstpage","723"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Histochemistry and Cell Biology"],["dc.bibliographiccitation.lastpage","734"],["dc.bibliographiccitation.volume","126"],["dc.contributor.author","Koenig, Sarah"],["dc.contributor.author","Probst, Irmelin"],["dc.contributor.author","Becker, Heinz"],["dc.contributor.author","Krause, Petra"],["dc.date.accessioned","2018-11-07T08:53:50Z"],["dc.date.available","2018-11-07T08:53:50Z"],["dc.date.issued","2006"],["dc.description.abstract","Oval cells constitute a heterogeneous population of proliferating progenitors found in rat livers following carcinogenic treatment (2-acetylaminofluorene and 70% hepatectomy). The aim of this study was to investigate the cellular pattern of various differentiation and cell type markers in this model of liver regeneration. Immunophenotypic characterisation revealed at least two subtypes emerging from the portal field. First, a population of oval cells formed duct-like structures and expressed bile duct (CD49f) as well as hepatocytic markers (alpha-foetoprotein, CD26). Second, a population of non-ductular oval cells was detected between and distally from the ductules expressing the neural marker nestin and the haematopoietic marker Thy1. Following oval cell isolation, a subset of the nestin-positive cells was shown to co-express hepatocytic and epithelial markers (albumin, CD26, pancytokeratin) and could be clearly distinguished from anti-desmin reactive hepatic stellate cells. The gene expression profiles (RT-PCR) of isolated oval cells and oval cell liver tissue were found to be similar to foetal liver (ED14). The present results suggest that the two oval cell populations are organised in a zonal hierarchy with a marker gradient from the inner (displaying hepatocytic and biliary markers) to the outer zone (showing hepatocytic and extrahepatic progenitor markers) of the proliferating progeny clusters."],["dc.identifier.doi","10.1007/s00418-006-0204-3"],["dc.identifier.isi","242624400009"],["dc.identifier.pmid","16835754"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/22524"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.relation.issn","0948-6143"],["dc.title","Zonal hierarchy of differentiation markers and nestin expression during oval cell mediated rat liver regeneration"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2010Journal Article
    [["dc.bibliographiccitation.firstpage","220"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Nitric Oxide"],["dc.bibliographiccitation.lastpage","226"],["dc.bibliographiccitation.volume","23"],["dc.contributor.author","Krause, Petra"],["dc.contributor.author","Waetzig, Esther"],["dc.contributor.author","Acil, Hasan"],["dc.contributor.author","Koenig, Sarah"],["dc.contributor.author","Unthan-Fechner, Kirsten"],["dc.contributor.author","Tsikas, Dimitrios"],["dc.contributor.author","Probst, Irmelin"],["dc.date.accessioned","2018-11-07T08:37:45Z"],["dc.date.available","2018-11-07T08:37:45Z"],["dc.date.issued","2010"],["dc.description.abstract","During liver regeneration in vivo carbon monoxide (CO) and nitric oxide (NO) are supposed to play a significant role. We raise the question whether CO and NO are involved in the growth process of cultured hepatocytes. Rat hepatocytes were stimulated into proliferation, growth being estimated by DNA content, mRNA by quantitative RT-PCR, and inducible NO synthase (iNOS) activity by GC-MS. Dexamethasone proved obligatory for fast proliferation. It suppressed the spontaneous rise of iNOS-mRNA in cultures devoid of glucocorticoids, but did not counteract the rise in mRNA in actively dividing cultures. Expression of iNOS-mRNA and cell growth were further enhanced by LiCl (10 mM). NOS activity was completely suppressed by the iNOS-specific inhibitors N-(3-(aminomethyl)benzyl) acetamidine (1400 W,100 mu M) and L-N(6)-(1-iminoethyl)lysine (L-NIL, 500 mu M), however, without a decrease in hepatocyte growth. Proliferation was attenuated only by very high concentrations (>0.5 mM) of N-nitro-L-arginine methyl ester NAME) and asymmetric dimethylarginine (ADMA). Various NO donors (at 100 mu M) did not stimulate cell growth. The furoxan CAS 1609 stimulated growth, decreased iNOS-mRNA expression and transiently increased haem oxygenase-1 (HO-1)-mRNA without releasing considerable amounts of NO. 1H-[1,2,4]Oxadiazolo[4,3,-alpha]quinoxalin-1-one (ODQ) attenuated the action of CAS 1609. Proliferation was stimulated by Co-protoporphyrin and tricarbonyldichlororuthenium(II) dimer (CORM-2). We conclude that CAS 1609 triggers hepatocyte mitosis most likely via direct, NO-independent induction of HO-1 expression, pointing to CO as a growth-promoting signal in the proliferation cascade in cultured hepatocytes. (C) 2010 Elsevier Inc. All rights reserved."],["dc.identifier.doi","10.1016/j.niox.2010.06.007"],["dc.identifier.isi","000281659600010"],["dc.identifier.pmid","20619352"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/18610"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Academic Press Inc Elsevier Science"],["dc.relation.issn","1089-8603"],["dc.title","Role of carbon monoxide and nitric oxide in adult rat hepatocytes proliferating in vitro: Effects of CAS 1609"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS