Now showing 1 - 5 of 5
  • 2016Journal Article Research Paper
    [["dc.bibliographiccitation.journal","Matters"],["dc.contributor.author","Clancy, Anne"],["dc.contributor.author","Schrul, Bianca"],["dc.contributor.author","Schwappach, Blanche"],["dc.date.accessioned","2017-11-28T10:03:35Z"],["dc.date.available","2017-11-28T10:03:35Z"],["dc.date.issued","2016"],["dc.description.abstract","14-3-3 proteins are abundant modulators of cellular processes, in particular signal transduction. They function by binding to a broad spectrum of client proteins, thus affecting client protein localisation or function[1]Gardino 2011 [1]Morrison 2009 [2][2]. Animals and plants express 14-3-3 proteins encoded by several genes, which has made it difficult to study their unique rather than shared functions. The yeast Saccharomyces cerevisiae possesses only two highly homologous 14-3-3 genes, BMH1 and BMH2. Using this model system we now uncover novel aspects of functional specificity between the two yeast 14-3-3s. We show that bmh1 but not bmh2 cells display an altered morphology of the endomembrane system and specific trafficking defects under glucose starvation. This but not a second phenotype specific to the bmh1 strain, that is, the accumulation of glycogen, was rescued by overexpression of the nucleotide exchange factor Gea1, suggesting a role for Bmh1 in Gea1’s function or regulation."],["dc.identifier.doi","10.19185/matters.201609000004"],["dc.identifier.fs","626945"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/10613"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/61"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | Z03: Synthetische genetische Analyse, automatisierte Mikroskopie und Bildanalyse"],["dc.relation.issn","2297-8240"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.title","The guanine nucleotide exchange factor Gea1 rescues an isoform-specific 14-3-3 phenotype"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","unknown"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2014Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1055"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","FEMS Yeast Research"],["dc.bibliographiccitation.lastpage","1067"],["dc.bibliographiccitation.volume","14"],["dc.contributor.author","Elbaz-Alon, Yael"],["dc.contributor.author","Morgan, Bruce"],["dc.contributor.author","Clancy, Anne"],["dc.contributor.author","Amoako, Theresa N. E."],["dc.contributor.author","Zalckvar, Einat"],["dc.contributor.author","Dick, Tobias P."],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","Schuldiner, Maya"],["dc.date.accessioned","2017-09-07T11:45:25Z"],["dc.date.available","2017-09-07T11:45:25Z"],["dc.date.issued","2014"],["dc.description.abstract","Glutathione, the most abundant small-molecule thiol in eukaryotic cells, is synthesized de novo solely in the cytosol and must subsequently be transported to other cellular compartments. The mechanisms of glutathione transport into and out of organelles remain largely unclear. We show that budding yeast Opt2, a close homolog of the plasma membrane glutathione transporter Opt1, localizes to peroxisomes. We demonstrate that deletion of OPT2 leads to major defects in maintaining peroxisomal, mitochondrial, and cytosolic glutathione redox homeostasis. Furthermore, opt2 strains display synthetic lethality with deletions of genes central to iron homeostasis that require mitochondrial glutathione redox homeostasis. Our results shed new light on the importance of peroxisomes in cellular glutathione homeostasis."],["dc.identifier.doi","10.1111/1567-1364.12196"],["dc.identifier.gro","3142025"],["dc.identifier.isi","000344918500007"],["dc.identifier.pmid","25130273"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/3712"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Wiley-blackwell"],["dc.relation.eissn","1567-1364"],["dc.relation.issn","1567-1356"],["dc.title","The yeast oligopeptide transporter Opt2 is localized to peroxisomes and affects glutathione redox homeostasis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","jcs211110"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Journal of Cell Science"],["dc.bibliographiccitation.volume","131"],["dc.contributor.author","Vitali, Daniela G."],["dc.contributor.author","Sinzel, Monika"],["dc.contributor.author","Bulthuis, Elianne P."],["dc.contributor.author","Kolb, Antonia"],["dc.contributor.author","Zabel, Susanne"],["dc.contributor.author","Mehlhorn, Dietmar G."],["dc.contributor.author","Figueiredo Costa, Bruna"],["dc.contributor.author","Farkas, Ákos"],["dc.contributor.author","Clancy, Anne"],["dc.contributor.author","Schuldiner, Maya"],["dc.contributor.author","Grefen, Christopher"],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","Borgese, Nica"],["dc.contributor.author","Rapaport, Doron"],["dc.date.accessioned","2020-12-10T18:41:52Z"],["dc.date.available","2020-12-10T18:41:52Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1242/jcs.211110"],["dc.identifier.pmid","29661846"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/77708"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/60"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P04: Der GET-Rezeptor als ein Eingangstor zum ER und sein Zusammenspiel mit GET bodies"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.title","The GET pathway can increase the risk of mitochondrial outer membrane proteins to be mistargeted to the ER"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2010Journal Article
    [["dc.bibliographiccitation.firstpage","2170"],["dc.bibliographiccitation.issue","13"],["dc.bibliographiccitation.journal","Journal of Cell Science"],["dc.bibliographiccitation.lastpage","2178"],["dc.bibliographiccitation.volume","123"],["dc.contributor.author","Leznicki, Pawel"],["dc.contributor.author","Clancy, Anne"],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","High, Stephen"],["dc.date.accessioned","2017-09-07T11:45:57Z"],["dc.date.available","2017-09-07T11:45:57Z"],["dc.date.issued","2010"],["dc.description.abstract","The membrane integration of tail-anchored proteins at the endoplasmic reticulum (ER) is post-translational, with different tail-anchored proteins exploiting distinct cytosolic factors. For example, mammalian TRC40 has a well-defined role during delivery of tail-anchored proteins to the ER. Although its Saccharomyces cerevisiae equivalent, Get3, is known to function in concert with at least four other components, Get1, Get2, Get4 and Get5 (Mdy2), the role of additional mammalian proteins during tail-anchored protein biogenesis is unclear. To this end, we analysed the cytosolic binding partners of Sec61 beta, a well-defined substrate of TRC40, and identified Bat3 as a previously unknown interacting partner. Depletion of Bat3 inhibits the membrane integration of Sec61 beta, but not of a second, TRC40-independent, tail-anchored protein, cytochrome b5. Thus, Bat3 influences the in vitro membrane integration of tail-anchored proteins using the TRC40 pathway. When expressed in Saccharomyces cerevisiae lacking a functional GET pathway for tail-anchored protein biogenesis, Bat3 associates with the resulting cytosolic pool of non-targeted chains and diverts it to the nucleus. This Bat3-mediated mislocalisation is not dependent upon Sgt2, a recently identified component of the yeast GET pathway, and we propose that Bat3 either modulates the TRC40 pathway in higher eukaryotes or provides an alternative fate for newly synthesised tail-anchored proteins."],["dc.identifier.doi","10.1242/jcs.066738"],["dc.identifier.gro","3142898"],["dc.identifier.isi","000278856400004"],["dc.identifier.pmid","20516149"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/353"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10 / Funder: Wellcome Trust"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1477-9137"],["dc.relation.issn","0021-9533"],["dc.title","Bat3 promotes the membrane integration of tail-anchored proteins"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2016Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","6916"],["dc.bibliographiccitation.issue","25"],["dc.bibliographiccitation.journal","Proceedings of the National Academy of Sciences"],["dc.bibliographiccitation.lastpage","6921"],["dc.bibliographiccitation.volume","113"],["dc.contributor.author","Arakel, Eric C."],["dc.contributor.author","Richter, Kora P."],["dc.contributor.author","Clancy, Anne"],["dc.contributor.author","Schwappach, Blanche"],["dc.date.accessioned","2017-09-07T11:44:51Z"],["dc.date.available","2017-09-07T11:44:51Z"],["dc.date.issued","2016"],["dc.description.abstract","Membrane recruitment of coatomer and formation of coat protein I (COPI)-coated vesicles is crucial to homeostasis in the early secretory pathway. The conformational dynamics of COPI during cargo capture and vesicle formation is incompletely understood. By scanning the length of delta-COP via functional complementation in yeast, we dissect the domains of the delta-COP subunit. We show that the mu-homology domain is dispensable for COPI function in the early secretory pathway, whereas the N-terminal longin domain is essential. We map a previously uncharacterized helix, C-terminal to the longin domain, that is specifically required for the retrieval of HDEL-bearing endoplasmic reticulum-luminal residents. It is positionally analogous to an unstructured linker that becomes helical and membrane-facing in the open form of the AP2 clathrin adaptor complex. Based on the amphipathic nature of the critical helix it may probe the membrane for lipid packing defects or mediate interaction with cargo and thus contribute to stabilizing membrane-associated coatomer."],["dc.identifier.doi","10.1073/pnas.1603544113"],["dc.identifier.gro","3141664"],["dc.identifier.isi","000378272400043"],["dc.identifier.pmid","27298352"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/6897"],["dc.notes.intern","WoS Import 2017-03-10 / Funder: University Medical Center Gottingen"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Natl Acad Sciences"],["dc.relation.issn","0027-8424"],["dc.title","delta-COP contains a helix C-terminal to its longin domain key to COPI dynamics and function"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS