Now showing 1 - 3 of 3
  • 2016Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","149"],["dc.bibliographiccitation.journal","Journal of Translational Medicine"],["dc.bibliographiccitation.volume","14"],["dc.contributor.author","Mohamed, Belal A."],["dc.contributor.author","Asif, Abdul R."],["dc.contributor.author","Schnelle, Moritz"],["dc.contributor.author","Qasim, Mohamed"],["dc.contributor.author","Khadjeh, Sara"],["dc.contributor.author","Lbik, Dawid"],["dc.contributor.author","Schott, Peter"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Toischer, Karl"],["dc.date.accessioned","2017-09-07T11:44:53Z"],["dc.date.available","2017-09-07T11:44:53Z"],["dc.date.issued","2016"],["dc.description.abstract","Background: Hemodynamic load leads to cardiac hypertrophy and heart failure. While afterload (pressure overload) induces concentric hypertrophy, elevation of preload (volume overload) yields eccentric hypertrophy and is associated with a better outcome. Here we analysed the proteomic pattern of mice subjected to short-term preload. Methods and Results: Female FVB/N mice were subjected to aortocaval shunt-induced volume overload that leads to an eccentric hypertrophy (left ventricular weight/tibia length +31 %) with sustained systolic heart function at 1 week after operation. Two-dimensional gel electrophoresis (2-DE) followed by mass spectrometric analysis showed alteration in the expression of 25 protein spots representing 21 different proteins. 64 % of these protein spots were up-regulated and 36 % of the protein spots were consistently down-regulated. Interestingly, alpha-1-antitrypsin was down-regulated, indicating higher elastin degradation and possibly contributing to the early dilatation. In addition to contractile and mitochondrial proteins, polymerase I and transcript release factor protein (PTRF) was also up-regulated, possibly contributing to the preload-induced signal transduction. Conclusions: Our findings reveal the proteomic changes of early-stage eccentric myocardial remodeling after volume overload. Induced expression of some of the respiratory chain enzymes suggests a metabolic shift towards an oxidative phosphorylation that might contribute to the favorable remodeling seen in early VO. Down-regulation of alpha-1-antitrypsin might contribute to extracellular matrix remodeling and left ventricular dilatation. We also identified PTRF as a potential signaling regulator of volume overload-induced cardiac hypertrophy."],["dc.identifier.doi","10.1186/s12967-016-0898-5"],["dc.identifier.gro","3141681"],["dc.identifier.isi","000377182700001"],["dc.identifier.pmid","27234427"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/13299"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8784"],["dc.notes.intern","WoS Import 2017-03-10 / Funder: German Research Foundation [SFB1002]"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Biomed Central Ltd"],["dc.relation.issn","1479-5876"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Proteomic analysis of short-term preload-induced eccentric cardiac hypertrophy"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2008Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","232"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Basic Research in Cardiology"],["dc.bibliographiccitation.lastpage","243"],["dc.bibliographiccitation.volume","103"],["dc.contributor.author","Schott, Peter"],["dc.contributor.author","Asif, Abdul R."],["dc.contributor.author","Graef, Christopher"],["dc.contributor.author","Toischer, Karl"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Koegler, Harald"],["dc.date.accessioned","2017-09-07T11:48:43Z"],["dc.date.available","2017-09-07T11:48:43Z"],["dc.date.issued","2008"],["dc.description.abstract","Chronic hemodynamic overload on the heart results in pathological myocardial hypertrophy, eventually followed by heart failure. Phosphatase calcineurin is a crucial mediator of this response. Little is known, however, about the role of calcineurin in response to acute alterations in loading conditions of the heart, where it could be mediating beneficial adaptational processes. We therefore analyzed proteome changes following a short-term increase in preload in rabbit myocardium in the absence or presence of the calcineurin inhibitor cyclosporine A. Rabbit right ventricular isolated papillary muscles were cultivated in a muscle chamber system under physiological conditions and remained either completely unloaded or were stretched to a preload of 3 mN/mm(2), while performing isotonic contractions (zero afterload). After 6 h, proteome changes were detected by two-dimensional gel electrophoresis and ESI-MS/MS. We identified 28 proteins that were upregulated by preload compared to the unloaded group (at least 1.75-fold regulation, all P < 0.05). Specifically, mechanical load upregulated a variety of enzymes involved in energy metabolism (i.e., aconitase, pyruvate kinase, fructose bisphosphate aldolase, ATP synthase alpha chain, acetyl-CoA acetyltransferase, NADH ubiquinone oxidoreductase, ubiquinol cytochrome c reductase, hydroxyacyl-CoA dehydrogenase). Cyclosporine A treatment (1 mu mol/l) abolished the preload-induced upregulation of these proteins. We demonstrate for the first time that an acute increase in the myocardial preload causes upregulation of metabolic enzymes, thereby increasing the capacity of the myocardium to generate ATP production. This short-term adaptation to enhanced mechanical load appears to critically depend on calcineurin phosphatase activity."],["dc.identifier.doi","10.1007/s00395-008-0696-1"],["dc.identifier.gro","3143301"],["dc.identifier.isi","000255030800004"],["dc.identifier.pmid","18274801"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/6727"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/800"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Dr Dietrich Steinkopff Verlag"],["dc.relation.issn","0300-8428"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Myocardial adaptation of energy metabolism to elevated preload depends on calcineurin activity"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2017Journal Article Research Paper
    [["dc.bibliographiccitation.journal","ESC Heart Failure"],["dc.contributor.author","Schotola, Hanna"],["dc.contributor.author","Sossalla, Samuel Tobias"],["dc.contributor.author","Renner, André"],["dc.contributor.author","Gummert, Jan"],["dc.contributor.author","Danner, Bernhard C."],["dc.contributor.author","Schott, Peter"],["dc.contributor.author","Toischer, Karl"],["dc.date.accessioned","2019-07-09T11:44:32Z"],["dc.date.available","2019-07-09T11:44:32Z"],["dc.date.issued","2017"],["dc.description.abstract","Aims The Frank–Starling mechanism (rapid response (RR)) and the secondary slow response (SR) are known to contribute to increases contractile performance. The contractility of the heart muscle is influenced by pre-load and after-load. Because of the effect of pre-load vs. after-load on these mechanisms in not completely understood, we studied the effect in isolated muscle strips. Methods and results Progressive stretch lead to an increase in shortening/force development under isotonic (only pre-load) and isometric conditions (pre- and after-load). Muscle length with maximal function was reached earlier under isotonic (Lmax-isotonic) compared with isometric conditions (Lmax-isometric) in nonfailing rabbit, in human atrial and in failing ventricular muscles. Also, SR after stretch from slack to Lmax-isotonic was comparable under isotonic and isometric conditions (human: isotonic 10 ± 4%, isometric 10 ± 4%). Moreover, a switch from isotonic to isometric conditions at Lmax-isometric showed no SR proving independence of after-load. To further analyse the degree of SR on the total contractile performance at higher pre-load muscles were stretched from slack to 98% Lmax-isometric under isotonic conditions. Thereby, the SR was 60 ± 9% in rabbit and 51 ± 14% in human muscle strips. Conclusions This work shows that the acute contractile response largely depends on the degree and type of mechanical load. Increased filling of the heart elevates pre-load and prolongs the isotonic part of contraction. The reduction in shortening at higher levels of pre-load is thereby partially compensated by the pre-load-induced SR. After-load shifts the contractile curve to a better ‘myofilament function’ by probably influencing thin fibers and calcium sensitivity, but has no effect on the SR."],["dc.identifier.doi","10.1002/ehf2.12164"],["dc.identifier.pmid","29154423"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14815"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59034"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/305"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A03: Bedeutung CaMKII-abhängiger Mechanismen für die Arrhythmogenese bei Herzinsuffizienz"],["dc.relation","SFB 1002 | D01: Erholung aus der Herzinsuffizienz – Einfluss von Fibrose und Transkriptionssignatur"],["dc.relation.issn","2055-5822"],["dc.relation.workinggroup","RG Sossalla (Kardiovaskuläre experimentelle Elektrophysiologie und Bildgebung)"],["dc.relation.workinggroup","RG Toischer (Kardiales Remodeling)"],["dc.rights","CC BY-NC-ND 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-nd/4.0"],["dc.subject.ddc","610"],["dc.title","The contractile adaption to preload depends on the amount of afterload"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC