Options
Knauf, Sascha
Loading...
Preferred name
Knauf, Sascha
Official Name
Knauf, Sascha
Alternative Name
Knauf, S.
Now showing 1 - 7 of 7
2019Journal Article [["dc.bibliographiccitation.journal","Frontiers in Microbiology"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Hallmaier-Wacker, Luisa K."],["dc.contributor.author","Lüert, Simone"],["dc.contributor.author","Gronow, Sabine"],["dc.contributor.author","Spröer, Cathrin"],["dc.contributor.author","Overmann, Jörg"],["dc.contributor.author","Buller, Nicky"],["dc.contributor.author","Vaughan-Higgins, Rebecca J."],["dc.contributor.author","Knauf, Sascha"],["dc.date.accessioned","2020-12-10T18:44:27Z"],["dc.date.available","2020-12-10T18:44:27Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.3389/fmicb.2019.02094"],["dc.identifier.eissn","1664-302X"],["dc.identifier.pmid","31552004"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16796"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/78462"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","Merged from goescholar"],["dc.relation.haserratum","/handle/2/78462"],["dc.relation.haserratum","/handle/2/78465"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","A Metataxonomic Tool to Investigate the Diversity of Treponema"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2016Journal Article [["dc.bibliographiccitation.firstpage","85"],["dc.bibliographiccitation.journal","EBioMedicine"],["dc.bibliographiccitation.lastpage","90"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Knauf, Sascha"],["dc.contributor.author","Raphael, Jane"],["dc.contributor.author","Mitjà, Oriol"],["dc.contributor.author","Lejora, Inyasi A.V."],["dc.contributor.author","Chuma, Idrissa S."],["dc.contributor.author","Batamuzi, Emmanuel K."],["dc.contributor.author","Keyyu, Julius D."],["dc.contributor.author","Fyumagwa, Robert"],["dc.contributor.author","Lüert, Simone"],["dc.contributor.author","Godornes, Charmie"],["dc.contributor.author","Lukehart, Sheila A."],["dc.date.accessioned","2022-10-06T13:33:05Z"],["dc.date.available","2022-10-06T13:33:05Z"],["dc.date.issued","2016"],["dc.identifier.doi","10.1016/j.ebiom.2016.07.033"],["dc.identifier.pii","S2352396416303437"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/115540"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-602"],["dc.relation.issn","2352-3964"],["dc.relation.orgunit","Deutsches Primatenzentrum"],["dc.rights.uri","https://www.elsevier.com/tdm/userlicense/1.0/"],["dc.title","Isolation of Treponema DNA from Necrophagous Flies in a Natural Ecosystem"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI2019Journal Article [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Scientific Reports"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Chuma, Idrissa S."],["dc.contributor.author","Roos, Christian"],["dc.contributor.author","Atickem, Anagaw"],["dc.contributor.author","Bohm, Torsten"],["dc.contributor.author","Anthony Collins, D."],["dc.contributor.author","Grillová, Linda"],["dc.contributor.author","Hallmaier-Wacker, Luisa K."],["dc.contributor.author","Kazwala, Rudovick R."],["dc.contributor.author","Keyyu, Julius D."],["dc.contributor.author","Lüert, Simone"],["dc.contributor.author","Maloueki, Ulrich"],["dc.contributor.author","Oppelt, Jan"],["dc.contributor.author","Petrželková, Klára J."],["dc.contributor.author","Piel, Alexander"],["dc.contributor.author","Stewart, Fiona A."],["dc.contributor.author","Šmajs, David"],["dc.contributor.author","Knauf, Sascha"],["dc.date.accessioned","2020-12-10T18:11:07Z"],["dc.date.available","2020-12-10T18:11:07Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1038/s41598-019-50779-9"],["dc.identifier.eissn","2045-2322"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16516"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/73902"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","Merged from goescholar"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Strain diversity of Treponema pallidum subsp. pertenue suggests rare interspecies transmission in African nonhuman primates"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2018Journal Article Research Paper [["dc.bibliographiccitation.artnumber","e0006396"],["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","PLoS Neglected Tropical Diseases"],["dc.bibliographiccitation.lastpage","14"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Knauf, Sascha"],["dc.contributor.author","Lüert, Simone"],["dc.contributor.author","Šmajs, David"],["dc.contributor.author","Strouhal, Michal"],["dc.contributor.author","Chuma, Idrissa S."],["dc.contributor.author","Frischmann, Sieghard"],["dc.contributor.author","Bakheit, Mohammed"],["dc.date.accessioned","2018-11-16T10:48:50Z"],["dc.date.accessioned","2021-10-27T13:13:17Z"],["dc.date.available","2018-11-16T10:48:50Z"],["dc.date.available","2021-10-27T13:13:17Z"],["dc.date.issued","2018"],["dc.description.abstract","We show proof of concept for gene targets (polA, tprL, and TP_0619) that can be used in loop-mediated isothermal amplification (LAMP) assays to rapidly differentiate infection with any of the three Treponema pallidum subspecies (pallidum (TPA), pertenue (TPE), and endemicum (TEN)) and which are known to infect humans and nonhuman primates (NHPs). Four TPA, six human, and two NHP TPE strains, as well as two human TEN strains were used to establish and validate the LAMP assays. All three LAMP assays were highly specific for the target DNA. Amplification was rapid (5–15 min) and within a range of 10E+6 to 10E+2 of target DNA molecules. Performance in NHP clinical samples was similar to the one seen in human TPE strains. The newly designed LAMP assays provide proof of concept for a diagnostic tool that enhances yaws clinical diagnosis. It is highly specific for the target DNA and does not require expensive laboratory equipment. Test results can potentially be interpreted with the naked eye, which makes it suitable for the use in remote clinical settings."],["dc.identifier.doi","10.1371/journal.pntd.0006396"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15670"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/91766"],["dc.language.iso","en"],["dc.notes.intern","Migrated from goescholar"],["dc.relation.issn","1935-2735"],["dc.relation.orgunit","Deutsches Primatenzentrum"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Gene target selection for loop-mediated isothermal amplification for rapid discrimination of Treponema pallidum subspecies"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2018Journal Article [["dc.bibliographiccitation.firstpage","1002"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Emerging Infectious Diseases"],["dc.bibliographiccitation.lastpage","1009"],["dc.bibliographiccitation.volume","24"],["dc.contributor.author","Chuma, Idrissa S."],["dc.contributor.author","Batamuzi, Emmanuel K."],["dc.contributor.author","Collins, D. Anthony"],["dc.contributor.author","Fyumagwa, Robert D."],["dc.contributor.author","Hallmaier-Wacker, Luisa K."],["dc.contributor.author","Kazwala, Rudovick R."],["dc.contributor.author","Keyyu, Julius D."],["dc.contributor.author","Lejora, Inyasi A."],["dc.contributor.author","Lipende, Iddi F."],["dc.contributor.author","Lüert, Simone"],["dc.contributor.author","Knauf, Sascha"],["dc.date.accessioned","2022-10-06T13:26:40Z"],["dc.date.available","2022-10-06T13:26:40Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.3201/eid2406.180037"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/115137"],["dc.notes.intern","DOI-Import GROB-602"],["dc.relation.eissn","1080-6059"],["dc.relation.issn","1080-6040"],["dc.relation.orgunit","Deutsches Primatenzentrum"],["dc.title","Widespread\n Treponema pallidum\n Infection in Nonhuman Primates, Tanzania"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI2019Journal Article Erratum [["dc.bibliographiccitation.journal","Frontiers in Microbiology"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Hallmaier-Wacker, Luisa K."],["dc.contributor.author","Lüert, Simone"],["dc.contributor.author","Gronow, Sabine"],["dc.contributor.author","Spröer, Cathrin"],["dc.contributor.author","Overmann, Jörg"],["dc.contributor.author","Buller, Nicky"],["dc.contributor.author","Vaughan-Higgins, Rebecca J."],["dc.contributor.author","Knauf, Sascha"],["dc.date.accessioned","2020-12-10T18:44:28Z"],["dc.date.available","2020-12-10T18:44:28Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.3389/fmicb.2019.02581"],["dc.identifier.eissn","1664-302X"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16956"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/78465"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","Merged from goescholar"],["dc.relation.iserratumof","/handle/2/78462"],["dc.relation.isformatof","/handle/2/78462"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Corrigendum: A Metataxonomic Tool to Investigate the Diversity of Treponema"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","erratum_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2021Journal Article [["dc.bibliographiccitation.artnumber","92"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","European Journal of Wildlife Research"],["dc.bibliographiccitation.volume","67"],["dc.contributor.author","Hisgen, Linda"],["dc.contributor.author","Abel, Lena"],["dc.contributor.author","Hallmaier-Wacker, Luisa"],["dc.contributor.author","Lüert, Simone"],["dc.contributor.author","Lavazza, Antonio"],["dc.contributor.author","Trogu, Tiziana"],["dc.contributor.author","Velarde, Roser"],["dc.contributor.author","Nováková, Markéta"],["dc.contributor.author","Gyuranecz, Miklós"],["dc.contributor.author","Ågren, Erik"],["dc.contributor.author","Knauf, Sascha"],["dc.date.accessioned","2021-12-01T09:23:27Z"],["dc.date.available","2021-12-01T09:23:27Z"],["dc.date.issued","2021"],["dc.description.abstract","Abstract Treponema paraluisleporidarum infects both rabbits (ecovar Cuniculus) and hares (ecovar Lepus). While the occurrence of the bacterium has previously been reported for European brown hares ( Lepus europaeus ) and domestic rabbits ( Oryctolagus cuniculus f. domestica ), there are no data available that report infection in the European context. We tested a total of 1,995 serum samples and 287 genital swabs from opportunistically sampled European brown hares ( Lepus europaeus ; n = 2135), Mountain hares ( Lepus timidus ; n = 4), European rabbits ( Oryctolagus cuniculus ; n = 138), and pet rabbits ( O. cuniculus f. domestica ; n = 5). The samples originated from eight European countries. In case only serum was available, we tested the samples for the presence of anti-treponemal antibodies. For this, we utilized the Treponema pallidum -particle agglutination test (TP-PA), which is suited for the use in lagomorphs due to the antigenic cross-reactivity of anti- T. pallidum and anti- T. paraluisleporidarum antibodies . In addition, the results of 380 sera were confirmed using the fluorescent- Treponema antibody absorption test (FTA-ABS). In all cases where swab samples were available, DNA was extracted and tested using quantitative PCR to test for the presence of the lagomorph syphilis-bacterium. We were able to detect antibodies in 825 of 1,995 lagomorph sera (41.4%; brown hare: 825/1,868; rabbit: 0/127) and obtained positive qPCR results from 182 of 287 swab samples (63.4%; European brown hare: 167/267; mountain hare: 4/4; rabbit: 11/16). While all rabbit sera ( n = 127) tested negative for anti-treponemal antibodies, the presence of the bacterium was confirmed in eight wild ( n = 8/11) and three domestic rabbits ( n = 3/5) from Germany using qPCR."],["dc.description.abstract","Abstract Treponema paraluisleporidarum infects both rabbits (ecovar Cuniculus) and hares (ecovar Lepus). While the occurrence of the bacterium has previously been reported for European brown hares ( Lepus europaeus ) and domestic rabbits ( Oryctolagus cuniculus f. domestica ), there are no data available that report infection in the European context. We tested a total of 1,995 serum samples and 287 genital swabs from opportunistically sampled European brown hares ( Lepus europaeus ; n = 2135), Mountain hares ( Lepus timidus ; n = 4), European rabbits ( Oryctolagus cuniculus ; n = 138), and pet rabbits ( O. cuniculus f. domestica ; n = 5). The samples originated from eight European countries. In case only serum was available, we tested the samples for the presence of anti-treponemal antibodies. For this, we utilized the Treponema pallidum -particle agglutination test (TP-PA), which is suited for the use in lagomorphs due to the antigenic cross-reactivity of anti- T. pallidum and anti- T. paraluisleporidarum antibodies . In addition, the results of 380 sera were confirmed using the fluorescent- Treponema antibody absorption test (FTA-ABS). In all cases where swab samples were available, DNA was extracted and tested using quantitative PCR to test for the presence of the lagomorph syphilis-bacterium. We were able to detect antibodies in 825 of 1,995 lagomorph sera (41.4%; brown hare: 825/1,868; rabbit: 0/127) and obtained positive qPCR results from 182 of 287 swab samples (63.4%; European brown hare: 167/267; mountain hare: 4/4; rabbit: 11/16). While all rabbit sera ( n = 127) tested negative for anti-treponemal antibodies, the presence of the bacterium was confirmed in eight wild ( n = 8/11) and three domestic rabbits ( n = 3/5) from Germany using qPCR."],["dc.identifier.doi","10.1007/s10344-021-01535-w"],["dc.identifier.pii","1535"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/94656"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-478"],["dc.relation.eissn","1439-0574"],["dc.relation.issn","1612-4642"],["dc.title","The distribution of lagomorph syphilis caused by Treponema paraluisleporidarum in Europe"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI