Now showing 1 - 10 of 21
  • 2020Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","856"],["dc.bibliographiccitation.issue","6518"],["dc.bibliographiccitation.journal","Science"],["dc.bibliographiccitation.lastpage","860"],["dc.bibliographiccitation.volume","370"],["dc.contributor.author","Cantuti-Castelvetri, Ludovico"],["dc.contributor.author","Ojha, Ravi"],["dc.contributor.author","Pedro, Liliana D."],["dc.contributor.author","Djannatian, Minou"],["dc.contributor.author","Franz, Jonas"],["dc.contributor.author","Kuivanen, Suvi"],["dc.contributor.author","van der Meer, Franziska"],["dc.contributor.author","Kallio, Katri"],["dc.contributor.author","Kaya, Tuğberk"],["dc.contributor.author","Anastasina, Maria"],["dc.contributor.author","Smura, Teemu"],["dc.contributor.author","Levanov, Lev"],["dc.contributor.author","Szirovicza, Leonora"],["dc.contributor.author","Tobi, Allan"],["dc.contributor.author","Kallio-Kokko, Hannimari"],["dc.contributor.author","Österlund, Pamela"],["dc.contributor.author","Joensuu, Merja"],["dc.contributor.author","Meunier, Frédéric A."],["dc.contributor.author","Butcher, Sarah J."],["dc.contributor.author","Winkler, Martin Sebastian"],["dc.contributor.author","Mollenhauer, Brit"],["dc.contributor.author","Helenius, Ari"],["dc.contributor.author","Gokce, Ozgun"],["dc.contributor.author","Teesalu, Tambet"],["dc.contributor.author","Hepojoki, Jussi"],["dc.contributor.author","Vapalahti, Olli"],["dc.contributor.author","Stadelmann, Christine"],["dc.contributor.author","Balistreri, Giuseppe"],["dc.contributor.author","Simons, Mikael"],["dc.date.accessioned","2021-04-14T08:31:26Z"],["dc.date.available","2021-04-14T08:31:26Z"],["dc.date.issued","2020"],["dc.description.abstract","The causative agent of coronavirus disease 2019 (COVID-19) is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For many viruses, tissue tropism is determined by the availability of virus receptors and entry cofactors on the surface of host cells. In this study, we found that neuropilin-1 (NRP1), known to bind furin-cleaved substrates, significantly potentiates SARS-CoV-2 infectivity, an effect blocked by a monoclonal blocking antibody against NRP1. A SARS-CoV-2 mutant with an altered furin cleavage site did not depend on NRP1 for infectivity. Pathological analysis of olfactory epithelium obtained from human COVID-19 autopsies revealed that SARS-CoV-2 infected NRP1-positive cells facing the nasal cavity. Our data provide insight into SARS-CoV-2 cell infectivity and define a potential target for antiviral intervention."],["dc.identifier.doi","10.1126/science.abd2985"],["dc.identifier.pmid","33082293"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/83594"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/73"],["dc.identifier.url","https://rdp.sfb274.de/literature/publications/8"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","TRR 274: Checkpoints of Central Nervous System Recovery"],["dc.relation","TRR 274 | A06: The role of lipid-sensing nuclear receptors as checkpoints in regulating phagocyte function during recovery from demyelinating injury"],["dc.relation.eissn","1095-9203"],["dc.relation.issn","0036-8075"],["dc.relation.workinggroup","RG Stadelmann-Nessler"],["dc.relation.workinggroup","RG Cantuti"],["dc.relation.workinggroup","RG Gokce (Systems Neuroscience – Cell Diversity)"],["dc.relation.workinggroup","RG Simons (The Biology of Glia in Development and Disease)"],["dc.rights","CC BY 4.0"],["dc.title","Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","6940"],["dc.bibliographiccitation.issue","27"],["dc.bibliographiccitation.journal","Proceedings of the National Academy of Sciences of the United States of America"],["dc.bibliographiccitation.lastpage","6945"],["dc.bibliographiccitation.volume","115"],["dc.contributor.author","Töpperwien, Mareike"],["dc.contributor.author","Meer, Franziska van der"],["dc.contributor.author","Stadelmann-Nessler, Christine"],["dc.contributor.author","Salditt, Tim"],["dc.date.accessioned","2020-03-11T09:06:18Z"],["dc.date.available","2020-03-11T09:06:18Z"],["dc.date.issued","2018"],["dc.description.abstract","To quantitatively evaluate brain tissue and its corresponding function, knowledge of the 3D cellular distribution is essential. The gold standard to obtain this information is histology, a destructive and labor-intensive technique where the specimen is sliced and examined under a light microscope, providing 3D information at nonisotropic resolution. To overcome the limitations of conventional histology, we use phase-contrast X-ray tomography with optimized optics, reconstruction, and image analysis, both at a dedicated synchrotron radiation endstation, which we have equipped with X-ray waveguide optics for coherence and wavefront filtering, and at a compact laboratory source. As a proof-of-concept demonstration we probe the 3D cytoarchitecture in millimeter-sized punches of unstained human cerebellum embedded in paraffin and show that isotropic subcellular resolution can be reached at both setups throughout the specimen. To enable a quantitative analysis of the reconstructed data, we demonstrate automatic cell segmentation and localization of over 1 million neurons within the cerebellar cortex. This allows for the analysis of the spatial organization and correlation of cells in all dimensions by borrowing concepts from condensed-matter physics, indicating a strong short-range order and local clustering of the cells in the granular layer. By quantification of 3D neuronal \"packing,\" we can hence shed light on how the human cerebellum accommodates 80% of the total neurons in the brain in only 10% of its volume. In addition, we show that the distribution of neighboring neurons in the granular layer is anisotropic with respect to the Purkinje cell dendrites."],["dc.identifier.doi","10.1073/pnas.1801678115"],["dc.identifier.pmid","29915047"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/63291"],["dc.language.iso","en"],["dc.relation.eissn","1091-6490"],["dc.relation.issn","0027-8424"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.rights","CC BY-NC-ND 4.0"],["dc.subject.gro","x-ray imaging"],["dc.subject.gro","biomedical tomography"],["dc.title","Three-dimensional virtual histology of human cerebellum by X-ray phase-contrast tomography"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2019Journal Article
    [["dc.bibliographiccitation.firstpage","eaav5519"],["dc.bibliographiccitation.issue","498"],["dc.bibliographiccitation.journal","Science Translational Medicine"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Steinbach, Karin"],["dc.contributor.author","Vincenti, Ilena"],["dc.contributor.author","Egervari, Kristof"],["dc.contributor.author","Kreutzfeldt, Mario"],["dc.contributor.author","van der Meer, Franziska"],["dc.contributor.author","Page, Nicolas"],["dc.contributor.author","Klimek, Bogna"],["dc.contributor.author","Rossitto-Borlat, Irène"],["dc.contributor.author","Di Liberto, Giovanni"],["dc.contributor.author","Muschaweckh, Andreas"],["dc.contributor.author","Wagner, Ingrid"],["dc.contributor.author","Hammad, Karim"],["dc.contributor.author","Stadelmann, Christine"],["dc.contributor.author","Korn, Thomas"],["dc.contributor.author","Hartley, Oliver"],["dc.contributor.author","Pinschewer, Daniel D."],["dc.contributor.author","Merkler, Doron"],["dc.date.accessioned","2020-12-10T18:36:47Z"],["dc.date.available","2020-12-10T18:36:47Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1126/scitranslmed.aav5519"],["dc.identifier.eissn","1946-6242"],["dc.identifier.issn","1946-6234"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/76737"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Brain-resident memory T cells generated early in life predispose to autoimmune disease in mice"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2020Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","47"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Neuroscience"],["dc.bibliographiccitation.lastpage","60"],["dc.bibliographiccitation.volume","24"],["dc.contributor.author","Berghoff, Stefan A."],["dc.contributor.author","Spieth, Lena"],["dc.contributor.author","Sun, Ting"],["dc.contributor.author","Hosang, Leon"],["dc.contributor.author","Schlaphoff, Lennart"],["dc.contributor.author","Depp, Constanze"],["dc.contributor.author","Düking, Tim"],["dc.contributor.author","Winchenbach, Jan"],["dc.contributor.author","Neuber, Jonathan"],["dc.contributor.author","Ewers, David"],["dc.contributor.author","Scholz, Patricia"],["dc.contributor.author","van der Meer, Franziska"],["dc.contributor.author","Cantuti-Castelvetri, Ludovico"],["dc.contributor.author","Sasmita, Andrew O."],["dc.contributor.author","Meschkat, Martin"],["dc.contributor.author","Ruhwedel, Torben"],["dc.contributor.author","Möbius, Wiebke"],["dc.contributor.author","Sankowski, Roman"],["dc.contributor.author","Prinz, Marco"],["dc.contributor.author","Huitinga, Inge"],["dc.contributor.author","Sereda, Michael W."],["dc.contributor.author","Odoardi, Francesca"],["dc.contributor.author","Ischebeck, Till"],["dc.contributor.author","Simons, Mikael"],["dc.contributor.author","Stadelmann-Nessler, Christine"],["dc.contributor.author","Edgar, Julia M."],["dc.contributor.author","Nave, Klaus-Armin"],["dc.contributor.author","Saher, Gesine"],["dc.date.accessioned","2021-04-14T08:27:05Z"],["dc.date.available","2021-04-14T08:27:05Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1038/s41593-020-00757-6"],["dc.identifier.pmid","33349711"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/82162"],["dc.identifier.url","https://rdp.sfb274.de/literature/publications/11"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","TRR 274: Checkpoints of Central Nervous System Recovery"],["dc.relation","TRR 274 | A04: The role of the meninges in the resolution of acute autoimmune CNS lesions"],["dc.relation.eissn","1546-1726"],["dc.relation.issn","1097-6256"],["dc.relation.workinggroup","RG Cantuti"],["dc.relation.workinggroup","RG Nave (Neurogenetics)"],["dc.relation.workinggroup","RG Odoardi (Echtzeitdarstellung neuroimmunologischer Prozesse)"],["dc.relation.workinggroup","RG Simons (The Biology of Glia in Development and Disease)"],["dc.relation.workinggroup","RG Stadelmann-Nessler"],["dc.title","Microglia facilitate repair of demyelinated lesions via post-squalene sterol synthesis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2019Journal Article
    [["dc.bibliographiccitation.firstpage","1196"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Glia"],["dc.bibliographiccitation.lastpage","1209"],["dc.bibliographiccitation.volume","67"],["dc.contributor.author","Bergner, Caroline G."],["dc.contributor.author","Meer, Franziska"],["dc.contributor.author","Winkler, Anne"],["dc.contributor.author","Wrzos, Claudia"],["dc.contributor.author","Türkmen, Mevlude"],["dc.contributor.author","Valizada, Emil"],["dc.contributor.author","Fitzner, Dirk"],["dc.contributor.author","Hametner, Simon"],["dc.contributor.author","Hartmann, Christian"],["dc.contributor.author","Pfeifenbring, Sabine"],["dc.contributor.author","Stadelmann, Christine"],["dc.date.accessioned","2022-03-01T11:45:41Z"],["dc.date.available","2022-03-01T11:45:41Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1002/glia.23598"],["dc.identifier.eissn","1098-1136"],["dc.identifier.issn","0894-1491"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103412"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-531"],["dc.relation.eissn","1098-1136"],["dc.relation.issn","0894-1491"],["dc.rights.uri","http://creativecommons.org/licenses/by-nc-nd/4.0/"],["dc.title","Microglia damage precedes major myelin breakdown in X‐linked adrenoleukodystrophy and metachromatic leukodystrophy"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2020Journal Article Research Paper
    [["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Journal of Experimental Medicine"],["dc.bibliographiccitation.volume","217"],["dc.contributor.author","Cunha, Maria Inês"],["dc.contributor.author","Su, Minhui"],["dc.contributor.author","Cantuti-Castelvetri, Ludovico"],["dc.contributor.author","Müller, Stephan A."],["dc.contributor.author","Schifferer, Martina"],["dc.contributor.author","Djannatian, Minou"],["dc.contributor.author","Alexopoulos, Ioannis"],["dc.contributor.author","van der Meer, Franziska"],["dc.contributor.author","Winkler, Anne"],["dc.contributor.author","van Ham, Tjakko J."],["dc.contributor.author","Schmid, Bettina"],["dc.contributor.author","Lichtenthaler, Stefan F."],["dc.contributor.author","Stadelmann, Christine"],["dc.contributor.author","Simons, Mikael"],["dc.date.accessioned","2020-12-10T18:15:37Z"],["dc.date.available","2020-12-10T18:15:37Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1084/jem.20191390"],["dc.identifier.pmid","32078678"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/74902"],["dc.identifier.url","https://rdp.sfb274.de/literature/publications/24"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","TRR 274: Checkpoints of Central Nervous System Recovery"],["dc.relation","TRR 274 | B01: The role of inflammatory cytokine signaling for efficient remyelination in multiple sclerosis"],["dc.relation.workinggroup","RG Cantuti"],["dc.relation.workinggroup","RG Simons (The Biology of Glia in Development and Disease)"],["dc.relation.workinggroup","RG Schifferer"],["dc.relation.workinggroup","RG Stadelmann-Nessler"],["dc.title","Pro-inflammatory activation following demyelination is required for myelin clearance and oligodendrogenesis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","glia.24042"],["dc.bibliographiccitation.firstpage","2362"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Glia"],["dc.bibliographiccitation.lastpage","2377"],["dc.bibliographiccitation.volume","69"],["dc.contributor.affiliation","Bergner, Caroline G.; 1\r\nInstitute of Neuropathology, University Medical Center Göttingen\r\nGöttingen Germany"],["dc.contributor.affiliation","Genc, Nafiye; 1\r\nInstitute of Neuropathology, University Medical Center Göttingen\r\nGöttingen Germany"],["dc.contributor.affiliation","Hametner, Simon; 3\r\nDivision of Neuropathology and Neurochemistry, Department of Neurology\r\nMedical University Vienna\r\nVienna Austria"],["dc.contributor.affiliation","Franz, Jonas; 1\r\nInstitute of Neuropathology, University Medical Center Göttingen\r\nGöttingen Germany"],["dc.contributor.affiliation","van der Meer, Franziska; 1\r\nInstitute of Neuropathology, University Medical Center Göttingen\r\nGöttingen Germany"],["dc.contributor.affiliation","Mitkovski, Miso; 6\r\nLight Microscopy Facility\r\nMax‐Planck Institute for Experimental Medicine\r\nGöttingen Germany"],["dc.contributor.affiliation","Weber, Martin S.; 2\r\nDepartment of Neurology\r\nUniversity Medical Center Göttingen\r\nGöttingen Germany"],["dc.contributor.affiliation","Stoltenburg‐Didinger, Gisela; 7\r\nInstitute of Cell Biology and Neurobiology, Charité University Medicine\r\nBerlin Germany"],["dc.contributor.affiliation","Kühl, Jörn‐Sven; 8\r\nDepartment of Pediatric Oncology, Hematology, and Hemostaseology\r\nUniversity of Leipzig Medical Center\r\nLeipzig Germany"],["dc.contributor.affiliation","Köhler, Wolfgang; 9\r\nDepartment of Neurology\r\nUniversity of Leipzig Medical Center\r\nLeipzig Germany"],["dc.contributor.affiliation","Brück, Wolfgang; 1\r\nInstitute of Neuropathology, University Medical Center Göttingen\r\nGöttingen Germany"],["dc.contributor.affiliation","Gärtner, Jutta; 10\r\nDepartment of Pediatrics and Adolescent Medicine\r\nUniversity Medical Center Göttingen\r\nGöttingen Germany"],["dc.contributor.author","Bergner, Caroline G."],["dc.contributor.author","Genc, Nafiye"],["dc.contributor.author","Hametner, Simon"],["dc.contributor.author","Franz, Jonas"],["dc.contributor.author","Mitkovski, Miso"],["dc.contributor.author","Weber, Martin S."],["dc.contributor.author","Stoltenburg‐Didinger, Gisela"],["dc.contributor.author","Kühl, Jörn‐Sven"],["dc.contributor.author","Stadelmann, Christine"],["dc.contributor.author","van der Meer, Franziska"],["dc.contributor.author","Köhler, Wolfgang"],["dc.contributor.author","Brück, Wolfgang"],["dc.contributor.author","Gärtner, Jutta"],["dc.date.accessioned","2021-08-12T07:45:04Z"],["dc.date.available","2021-08-12T07:45:04Z"],["dc.date.issued","2021"],["dc.date.updated","2022-03-21T10:48:21Z"],["dc.description.abstract","Abstract Cerebral disease manifestation occurs in about two thirds of males with X‐linked adrenoleukodystrophy (CALD) and is fatally progressive if left untreated. Early histopathologic studies categorized CALD as an inflammatory demyelinating disease, which led to repeated comparisons to multiple sclerosis (MS). The aim of this study was to revisit the relationship between axonal damage and myelin loss in CALD. We applied novel immunohistochemical tools to investigate axonal damage, myelin loss and myelin repair in autopsy brain tissue of eight CALD and 25 MS patients. We found extensive and severe acute axonal damage in CALD already in prelesional areas defined by microglia loss and relative myelin preservation. In contrast to MS, we did not observe selective phagocytosis of myelin, but a concomitant decay of the entire axon‐myelin unit in all CALD lesion stages. Using a novel marker protein for actively remyelinating oligodendrocytes, breast carcinoma‐amplified sequence (BCAS) 1, we show that repair pathways are activated in oligodendrocytes in CALD. Regenerating cells, however, were affected by the ongoing disease process. We provide evidence that—in contrast to MS—selective myelin phagocytosis is not characteristic of CALD. On the contrary, our data indicate that acute axonal injury and permanent axonal loss are thus far underestimated features of the disease that must come into focus in our search for biomarkers and novel therapeutic approaches."],["dc.description.abstract","MAIN POINTS This study characterizes CALD as an axonopathic disease. Microglia cell death in CALD early lesion formation is associated with severe axonal damage. Microglia homeostasis may be linked to axonal energy metabolism. image"],["dc.description.sponsorship","Association Européenne contre les Leucodystrophies http://dx.doi.org/10.13039/501100008731"],["dc.description.sponsorship","Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659"],["dc.description.sponsorship","Deutsche Multiple Sklerose Gesellschaft http://dx.doi.org/10.13039/501100007458"],["dc.description.sponsorship","Gemeinnützige Hertie‐Stiftung http://dx.doi.org/10.13039/501100003493"],["dc.description.sponsorship","National Multiple Sclerosis Society http://dx.doi.org/10.13039/100000890"],["dc.identifier.doi","10.1002/glia.24042"],["dc.identifier.pmid","34137074"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/88362"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/269"],["dc.identifier.url","https://rdp.sfb274.de/literature/publications/37"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-448"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","TRR 274: Checkpoints of Central Nervous System Recovery"],["dc.relation","TRR 274 | B01: The role of inflammatory cytokine signaling for efficient remyelination in multiple sclerosis"],["dc.relation","TRR 274 | B02: Inflammatory neurodegeneration and repair mechanisms in childhood onset autoimmune and neurometabolic demyelinating CNS disease"],["dc.relation.eissn","1098-1136"],["dc.relation.issn","0894-1491"],["dc.relation.workinggroup","RG Gärtner"],["dc.relation.workinggroup","RG Stadelmann-Nessler"],["dc.relation.workinggroup","RG Brück"],["dc.rights","This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made."],["dc.title","Concurrent axon and myelin destruction differentiates X‐linked adrenoleukodystrophy from multiple sclerosis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2017Journal Article
    [["dc.bibliographiccitation.firstpage","eaam7816"],["dc.bibliographiccitation.issue","419"],["dc.bibliographiccitation.journal","Science Translational Medicine"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Fard, Maryam K."],["dc.contributor.author","van der Meer, Franziska"],["dc.contributor.author","Sánchez, Paula"],["dc.contributor.author","Cantuti-Castelvetri, Ludovico"],["dc.contributor.author","Mandad, Sunit"],["dc.contributor.author","Jäkel, Sarah"],["dc.contributor.author","Fornasiero, Eugenio F."],["dc.contributor.author","Schmitt, Sebastian"],["dc.contributor.author","Ehrlich, Marc"],["dc.contributor.author","Starost, Laura"],["dc.contributor.author","Kuhlmann, Tanja"],["dc.contributor.author","Sergiou, Christina"],["dc.contributor.author","Schultz, Verena"],["dc.contributor.author","Wrzos, Claudia"],["dc.contributor.author","Brück, Wolfgang"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Dimou, Leda"],["dc.contributor.author","Stadelmann, Christine"],["dc.contributor.author","Simons, Mikael"],["dc.date.accessioned","2020-12-10T18:36:46Z"],["dc.date.available","2020-12-10T18:36:46Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1126/scitranslmed.aam7816"],["dc.identifier.eissn","1946-6242"],["dc.identifier.issn","1946-6234"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/76735"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","BCAS1 expression defines a population of early myelinating oligodendrocytes in multiple sclerosis lesions"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2019Conference Paper
    [["dc.bibliographiccitation.firstpage","3"],["dc.bibliographiccitation.volume","11113"],["dc.contributor.author","Robisch, Anna Lena"],["dc.contributor.author","Eckermann, Marina"],["dc.contributor.author","Töpperwien, Mareike"],["dc.contributor.author","Meer, Franziska van der"],["dc.contributor.author","Stadelmann-Nessler, Christine"],["dc.contributor.author","Salditt, Tim"],["dc.contributor.editor","Müller, Bert"],["dc.contributor.editor","Wang, Ge"],["dc.date.accessioned","2020-04-23T12:45:49Z"],["dc.date.available","2020-04-23T12:45:49Z"],["dc.date.issued","2019"],["dc.description.abstract","X-ray cone-beam holo-tomography of unstained tissue from the human central nervous system reveals details down to sub-cellular length scales.1 This visualization of variations in the electron density of the sample is based on phase contrast techniques using intensities formed by self-interference of the beam between object and detector. Phase retrieval inverts diffraction and overcomes the phase problem by constraints such as several measurements at different Fresnel numbers for a single projection. Therefore, the object-to-detector distance (defocus) can be varied. However, for cone beam geometry, changing defocus changes magnification, which can be problematic in view of image processing and resolution. Alternatively, the photon energy can be altered (multi-E). Far from absorption edges, multi-E data yield the wavelength independent electron density. In this contribution we present multi-E holo-tomography at the GINIX setup of the P10 beamline at DESY. The instrument is based on a combined optics of elliptical mirrors and an x-ray waveguide positioned in the focal plane for further coherence, spatial Filtering and high numerical aperture.2 Previous results showed the suitability of this instrument for nanoscale tomography of unstained brain tissue.1 We demonstrate that upon energy variation, the focal spot is stable enough for imaging. To this end, a double crystal monochromator and automated alignment routines are required. Three tomograms of human brain tissue were recorded and jointly analyzed using phase retrieval based on the contrast transfer function formalism generalized to multiple photon energies. Variations of the electron density of the sample are successfully reconstructed. © (2019) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only."],["dc.identifier.doi","10.1117/12.2529041"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/64294"],["dc.language.iso","en"],["dc.notes.preprint","yes"],["dc.relation.eisbn","978-1-5106-2920-2"],["dc.relation.eventend","2019-09"],["dc.relation.eventlocation","San Diego"],["dc.relation.eventstart","2019-09"],["dc.relation.isbn","978-1-5106-2919-6"],["dc.relation.iserratumof","yes"],["dc.title","Nanoscale x-ray holo-tomography of human brain tissue with phase retrieval based on multiphoton energy recordings"],["dc.type","conference_paper"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","e2113835118"],["dc.bibliographiccitation.issue","48"],["dc.bibliographiccitation.journal","Proceedings of the National Academy of Sciences"],["dc.bibliographiccitation.volume","118"],["dc.contributor.author","Eckermann, Marina"],["dc.contributor.author","Schmitzer, Bernhard"],["dc.contributor.author","van der Meer, Franziska"],["dc.contributor.author","Franz, Jonas"],["dc.contributor.author","Hansen, Ove"],["dc.contributor.author","Stadelmann, Christine"],["dc.contributor.author","Salditt, Tim"],["dc.date.accessioned","2022-01-11T14:05:50Z"],["dc.date.available","2022-01-11T14:05:50Z"],["dc.date.issued","2021"],["dc.description.abstract","We have studied the three-dimensional (3D) cytoarchitecture of the human hippocampus in neuropathologically healthy and Alzheimer’s disease (AD) individuals, based on phase-contrast X-ray computed tomography of postmortem human tissue punch biopsies. In view of recent findings suggesting a nuclear origin of AD, we target in particular the nuclear structure of the dentate gyrus (DG) granule cells. Tissue samples of 20 individuals were scanned and evaluated using a highly automated approach of measurement and analysis, combining multiscale recordings, optimized phase retrieval, segmentation by machine learning, representation of structural properties in a feature space, and classification based on the theory of optimal transport. Accordingly, we find that the prototypical transformation between a structure representing healthy granule cells and the pathological state involves a decrease in the volume of granule cell nuclei, as well as an increase in the electron density and its spatial heterogeneity. The latter can be explained by a higher ratio of heterochromatin to euchromatin. Similarly, many other structural properties can be derived from the data, reflecting both the natural polydispersity of the hippocampal cytoarchitecture between different individuals in the physiological context and the structural effects associated with AD pathology."],["dc.identifier.doi","10.1073/pnas.2113835118"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/97758"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/369"],["dc.identifier.url","https://rdp.sfb274.de/literature/publications/53"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-507"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","TRR 274: Checkpoints of Central Nervous System Recovery"],["dc.relation","TRR 274 | B01: The role of inflammatory cytokine signaling for efficient remyelination in multiple sclerosis"],["dc.relation.eissn","1091-6490"],["dc.relation.issn","0027-8424"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.relation.workinggroup","RG Stadelmann-Nessler"],["dc.rights","CC BY-NC-ND 4.0"],["dc.subject.gro","biomedical tomography"],["dc.title","Three-dimensional virtual histology of the human hippocampus based on phase-contrast computed tomography"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI