Options
Meer, Franziska van der
Loading...
Preferred name
Meer, Franziska van der
Official Name
Meer, Franziska van der
Alternative Name
Meer, F. van der
Meer, F. v. d.
Meer, Franziska v. d.
van der Meer, Franziska
van der Meer, F.
Main Affiliation
Now showing 1 - 10 of 16
2019Journal Article [["dc.bibliographiccitation.firstpage","eaav5519"],["dc.bibliographiccitation.issue","498"],["dc.bibliographiccitation.journal","Science Translational Medicine"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Steinbach, Karin"],["dc.contributor.author","Vincenti, Ilena"],["dc.contributor.author","Egervari, Kristof"],["dc.contributor.author","Kreutzfeldt, Mario"],["dc.contributor.author","van der Meer, Franziska"],["dc.contributor.author","Page, Nicolas"],["dc.contributor.author","Klimek, Bogna"],["dc.contributor.author","Rossitto-Borlat, Irène"],["dc.contributor.author","Di Liberto, Giovanni"],["dc.contributor.author","Muschaweckh, Andreas"],["dc.contributor.author","Wagner, Ingrid"],["dc.contributor.author","Hammad, Karim"],["dc.contributor.author","Stadelmann, Christine"],["dc.contributor.author","Korn, Thomas"],["dc.contributor.author","Hartley, Oliver"],["dc.contributor.author","Pinschewer, Daniel D."],["dc.contributor.author","Merkler, Doron"],["dc.date.accessioned","2020-12-10T18:36:47Z"],["dc.date.available","2020-12-10T18:36:47Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1126/scitranslmed.aav5519"],["dc.identifier.eissn","1946-6242"],["dc.identifier.issn","1946-6234"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/76737"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Brain-resident memory T cells generated early in life predispose to autoimmune disease in mice"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2020Journal Article Research Paper [["dc.bibliographiccitation.firstpage","47"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Neuroscience"],["dc.bibliographiccitation.lastpage","60"],["dc.bibliographiccitation.volume","24"],["dc.contributor.author","Berghoff, Stefan A."],["dc.contributor.author","Spieth, Lena"],["dc.contributor.author","Sun, Ting"],["dc.contributor.author","Hosang, Leon"],["dc.contributor.author","Schlaphoff, Lennart"],["dc.contributor.author","Depp, Constanze"],["dc.contributor.author","Düking, Tim"],["dc.contributor.author","Winchenbach, Jan"],["dc.contributor.author","Neuber, Jonathan"],["dc.contributor.author","Ewers, David"],["dc.contributor.author","Scholz, Patricia"],["dc.contributor.author","van der Meer, Franziska"],["dc.contributor.author","Cantuti-Castelvetri, Ludovico"],["dc.contributor.author","Sasmita, Andrew O."],["dc.contributor.author","Meschkat, Martin"],["dc.contributor.author","Ruhwedel, Torben"],["dc.contributor.author","Möbius, Wiebke"],["dc.contributor.author","Sankowski, Roman"],["dc.contributor.author","Prinz, Marco"],["dc.contributor.author","Huitinga, Inge"],["dc.contributor.author","Sereda, Michael W."],["dc.contributor.author","Odoardi, Francesca"],["dc.contributor.author","Ischebeck, Till"],["dc.contributor.author","Simons, Mikael"],["dc.contributor.author","Stadelmann-Nessler, Christine"],["dc.contributor.author","Edgar, Julia M."],["dc.contributor.author","Nave, Klaus-Armin"],["dc.contributor.author","Saher, Gesine"],["dc.date.accessioned","2021-04-14T08:27:05Z"],["dc.date.available","2021-04-14T08:27:05Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1038/s41593-020-00757-6"],["dc.identifier.pmid","33349711"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/82162"],["dc.identifier.url","https://rdp.sfb274.de/literature/publications/11"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","TRR 274: Checkpoints of Central Nervous System Recovery"],["dc.relation","TRR 274 | A04: The role of the meninges in the resolution of acute autoimmune CNS lesions"],["dc.relation.eissn","1546-1726"],["dc.relation.issn","1097-6256"],["dc.relation.workinggroup","RG Cantuti"],["dc.relation.workinggroup","RG Nave (Neurogenetics)"],["dc.relation.workinggroup","RG Odoardi (Echtzeitdarstellung neuroimmunologischer Prozesse)"],["dc.relation.workinggroup","RG Simons (The Biology of Glia in Development and Disease)"],["dc.relation.workinggroup","RG Stadelmann-Nessler"],["dc.title","Microglia facilitate repair of demyelinated lesions via post-squalene sterol synthesis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2019Journal Article [["dc.bibliographiccitation.firstpage","1196"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Glia"],["dc.bibliographiccitation.lastpage","1209"],["dc.bibliographiccitation.volume","67"],["dc.contributor.author","Bergner, Caroline G."],["dc.contributor.author","Meer, Franziska"],["dc.contributor.author","Winkler, Anne"],["dc.contributor.author","Wrzos, Claudia"],["dc.contributor.author","Türkmen, Mevlude"],["dc.contributor.author","Valizada, Emil"],["dc.contributor.author","Fitzner, Dirk"],["dc.contributor.author","Hametner, Simon"],["dc.contributor.author","Hartmann, Christian"],["dc.contributor.author","Pfeifenbring, Sabine"],["dc.contributor.author","Stadelmann, Christine"],["dc.date.accessioned","2022-03-01T11:45:41Z"],["dc.date.available","2022-03-01T11:45:41Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1002/glia.23598"],["dc.identifier.eissn","1098-1136"],["dc.identifier.issn","0894-1491"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103412"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-531"],["dc.relation.eissn","1098-1136"],["dc.relation.issn","0894-1491"],["dc.rights.uri","http://creativecommons.org/licenses/by-nc-nd/4.0/"],["dc.title","Microglia damage precedes major myelin breakdown in X‐linked adrenoleukodystrophy and metachromatic leukodystrophy"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2020Journal Article Research Paper [["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Journal of Experimental Medicine"],["dc.bibliographiccitation.volume","217"],["dc.contributor.author","Cunha, Maria Inês"],["dc.contributor.author","Su, Minhui"],["dc.contributor.author","Cantuti-Castelvetri, Ludovico"],["dc.contributor.author","Müller, Stephan A."],["dc.contributor.author","Schifferer, Martina"],["dc.contributor.author","Djannatian, Minou"],["dc.contributor.author","Alexopoulos, Ioannis"],["dc.contributor.author","van der Meer, Franziska"],["dc.contributor.author","Winkler, Anne"],["dc.contributor.author","van Ham, Tjakko J."],["dc.contributor.author","Schmid, Bettina"],["dc.contributor.author","Lichtenthaler, Stefan F."],["dc.contributor.author","Stadelmann, Christine"],["dc.contributor.author","Simons, Mikael"],["dc.date.accessioned","2020-12-10T18:15:37Z"],["dc.date.available","2020-12-10T18:15:37Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1084/jem.20191390"],["dc.identifier.pmid","32078678"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/74902"],["dc.identifier.url","https://rdp.sfb274.de/literature/publications/24"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","TRR 274: Checkpoints of Central Nervous System Recovery"],["dc.relation","TRR 274 | B01: The role of inflammatory cytokine signaling for efficient remyelination in multiple sclerosis"],["dc.relation.workinggroup","RG Cantuti"],["dc.relation.workinggroup","RG Simons (The Biology of Glia in Development and Disease)"],["dc.relation.workinggroup","RG Schifferer"],["dc.relation.workinggroup","RG Stadelmann-Nessler"],["dc.title","Pro-inflammatory activation following demyelination is required for myelin clearance and oligodendrogenesis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2017Journal Article [["dc.bibliographiccitation.firstpage","eaam7816"],["dc.bibliographiccitation.issue","419"],["dc.bibliographiccitation.journal","Science Translational Medicine"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Fard, Maryam K."],["dc.contributor.author","van der Meer, Franziska"],["dc.contributor.author","Sánchez, Paula"],["dc.contributor.author","Cantuti-Castelvetri, Ludovico"],["dc.contributor.author","Mandad, Sunit"],["dc.contributor.author","Jäkel, Sarah"],["dc.contributor.author","Fornasiero, Eugenio F."],["dc.contributor.author","Schmitt, Sebastian"],["dc.contributor.author","Ehrlich, Marc"],["dc.contributor.author","Starost, Laura"],["dc.contributor.author","Kuhlmann, Tanja"],["dc.contributor.author","Sergiou, Christina"],["dc.contributor.author","Schultz, Verena"],["dc.contributor.author","Wrzos, Claudia"],["dc.contributor.author","Brück, Wolfgang"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Dimou, Leda"],["dc.contributor.author","Stadelmann, Christine"],["dc.contributor.author","Simons, Mikael"],["dc.date.accessioned","2020-12-10T18:36:46Z"],["dc.date.available","2020-12-10T18:36:46Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1126/scitranslmed.aam7816"],["dc.identifier.eissn","1946-6242"],["dc.identifier.issn","1946-6234"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/76735"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","BCAS1 expression defines a population of early myelinating oligodendrocytes in multiple sclerosis lesions"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2021Journal Article [["dc.bibliographiccitation.firstpage","e543"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Neurology"],["dc.bibliographiccitation.lastpage","e553"],["dc.bibliographiccitation.volume","97"],["dc.contributor.author","Maggi, Pietro"],["dc.contributor.author","Kuhle, Jens"],["dc.contributor.author","Schädelin, Sabine"],["dc.contributor.author","van der Meer, Franziska"],["dc.contributor.author","Weigel, Matthias"],["dc.contributor.author","Galbusera, Riccardo"],["dc.contributor.author","Mathias, Amandine"],["dc.contributor.author","Lu, Po-Jui"],["dc.contributor.author","Rahmanzadeh, Reza"],["dc.contributor.author","Benkert, Pascal"],["dc.contributor.author","Granziera, Cristina"],["dc.date.accessioned","2021-12-01T09:23:59Z"],["dc.date.available","2021-12-01T09:23:59Z"],["dc.date.issued","2021"],["dc.description.abstract","Objective To assess whether chronic white matter inflammation in patients with multiple sclerosis (MS) as detected in vivo by paramagnetic rim MRI lesions (PRLs) is associated with higher serum neurofilament light chain (sNfL) levels, a marker of neuroaxonal damage. Methods In 118 patients with MS with no gadolinium-enhancing lesions or recent relapses, we analyzed 3D-submillimeter phase MRI and sNfL levels. Histopathologic evaluation was performed in 25 MS lesions from 20 additional autopsy MS cases. Results In univariable analyses, participants with ≥2 PRLs (n = 43) compared to those with ≤1 PRL (n = 75) had higher age-adjusted sNfL percentiles (median, 91 and 68; p < 0.001) and higher Multiple Sclerosis Severity Scale scores (MSSS median, 4.3 and 2.4; p = 0.003). In multivariable analyses, sNfL percentile levels were higher in PRLs ≥2 cases (β add , 16.3; 95% confidence interval [CI], 4.6–28.0; p < 0.01), whereas disease-modifying treatment (DMT), Expanded Disability Status Scale (EDSS) score, and T2 lesion load did not affect sNfL. In a similar model, sNfL percentile levels were highest in cases with ≥4 PRLs (n = 30; β add , 30.4; 95% CI, 15.6–45.2; p < 0.01). Subsequent multivariable analysis revealed that PRLs ≥2 cases also had higher MSSS (β add , 1.1; 95% CI, 0.3–1.9; p < 0.01), whereas MSSS was not affected by DMT or T2 lesion load. On histopathology, both chronic active and smoldering lesions exhibited more severe acute axonal damage at the lesion edge than in the lesion center (edge vs center: p = 0.004 and p = 0.0002, respectively). Conclusion Chronic white matter inflammation was associated with increased levels of sNfL and disease severity in nonacute MS, suggesting that PRL contribute to clinically relevant, inflammation-driven neurodegeneration."],["dc.description.abstract","Objective To assess whether chronic white matter inflammation in patients with multiple sclerosis (MS) as detected in vivo by paramagnetic rim MRI lesions (PRLs) is associated with higher serum neurofilament light chain (sNfL) levels, a marker of neuroaxonal damage. Methods In 118 patients with MS with no gadolinium-enhancing lesions or recent relapses, we analyzed 3D-submillimeter phase MRI and sNfL levels. Histopathologic evaluation was performed in 25 MS lesions from 20 additional autopsy MS cases. Results In univariable analyses, participants with ≥2 PRLs (n = 43) compared to those with ≤1 PRL (n = 75) had higher age-adjusted sNfL percentiles (median, 91 and 68; p < 0.001) and higher Multiple Sclerosis Severity Scale scores (MSSS median, 4.3 and 2.4; p = 0.003). In multivariable analyses, sNfL percentile levels were higher in PRLs ≥2 cases (β add , 16.3; 95% confidence interval [CI], 4.6–28.0; p < 0.01), whereas disease-modifying treatment (DMT), Expanded Disability Status Scale (EDSS) score, and T2 lesion load did not affect sNfL. In a similar model, sNfL percentile levels were highest in cases with ≥4 PRLs (n = 30; β add , 30.4; 95% CI, 15.6–45.2; p < 0.01). Subsequent multivariable analysis revealed that PRLs ≥2 cases also had higher MSSS (β add , 1.1; 95% CI, 0.3–1.9; p < 0.01), whereas MSSS was not affected by DMT or T2 lesion load. On histopathology, both chronic active and smoldering lesions exhibited more severe acute axonal damage at the lesion edge than in the lesion center (edge vs center: p = 0.004 and p = 0.0002, respectively). Conclusion Chronic white matter inflammation was associated with increased levels of sNfL and disease severity in nonacute MS, suggesting that PRL contribute to clinically relevant, inflammation-driven neurodegeneration."],["dc.identifier.doi","10.1212/WNL.0000000000012326"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/94815"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-478"],["dc.relation.eissn","1526-632X"],["dc.relation.issn","0028-3878"],["dc.title","Chronic White Matter Inflammation and Serum Neurofilament Levels in Multiple Sclerosis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2019Conference Paper [["dc.bibliographiccitation.firstpage","3"],["dc.bibliographiccitation.volume","11113"],["dc.contributor.author","Robisch, Anna Lena"],["dc.contributor.author","Eckermann, Marina"],["dc.contributor.author","Töpperwien, Mareike"],["dc.contributor.author","Meer, Franziska van der"],["dc.contributor.author","Stadelmann-Nessler, Christine"],["dc.contributor.author","Salditt, Tim"],["dc.contributor.editor","Müller, Bert"],["dc.contributor.editor","Wang, Ge"],["dc.date.accessioned","2020-04-23T12:45:49Z"],["dc.date.available","2020-04-23T12:45:49Z"],["dc.date.issued","2019"],["dc.description.abstract","X-ray cone-beam holo-tomography of unstained tissue from the human central nervous system reveals details down to sub-cellular length scales.1 This visualization of variations in the electron density of the sample is based on phase contrast techniques using intensities formed by self-interference of the beam between object and detector. Phase retrieval inverts diffraction and overcomes the phase problem by constraints such as several measurements at different Fresnel numbers for a single projection. Therefore, the object-to-detector distance (defocus) can be varied. However, for cone beam geometry, changing defocus changes magnification, which can be problematic in view of image processing and resolution. Alternatively, the photon energy can be altered (multi-E). Far from absorption edges, multi-E data yield the wavelength independent electron density. In this contribution we present multi-E holo-tomography at the GINIX setup of the P10 beamline at DESY. The instrument is based on a combined optics of elliptical mirrors and an x-ray waveguide positioned in the focal plane for further coherence, spatial Filtering and high numerical aperture.2 Previous results showed the suitability of this instrument for nanoscale tomography of unstained brain tissue.1 We demonstrate that upon energy variation, the focal spot is stable enough for imaging. To this end, a double crystal monochromator and automated alignment routines are required. Three tomograms of human brain tissue were recorded and jointly analyzed using phase retrieval based on the contrast transfer function formalism generalized to multiple photon energies. Variations of the electron density of the sample are successfully reconstructed. © (2019) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only."],["dc.identifier.doi","10.1117/12.2529041"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/64294"],["dc.language.iso","en"],["dc.notes.preprint","yes"],["dc.relation.eisbn","978-1-5106-2920-2"],["dc.relation.eventend","2019-09"],["dc.relation.eventlocation","San Diego"],["dc.relation.eventstart","2019-09"],["dc.relation.isbn","978-1-5106-2919-6"],["dc.relation.iserratumof","yes"],["dc.title","Nanoscale x-ray holo-tomography of human brain tissue with phase retrieval based on multiphoton energy recordings"],["dc.type","conference_paper"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2020Journal Article Research Paper [["dc.bibliographiccitation.firstpage","2073"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","Brain: A Journal of Neurology"],["dc.bibliographiccitation.lastpage","2088"],["dc.bibliographiccitation.volume","143"],["dc.contributor.author","Jäckle, Katharina"],["dc.contributor.author","Zeis, Thomas"],["dc.contributor.author","Schaeren-Wiemers, Nicole"],["dc.contributor.author","Junker, Andreas"],["dc.contributor.author","van der Meer, Franziska"],["dc.contributor.author","Kramann, Nadine"],["dc.contributor.author","Stadelmann, Christine"],["dc.contributor.author","Brück, Wolfgang"],["dc.date.accessioned","2021-04-14T08:24:16Z"],["dc.date.available","2021-04-14T08:24:16Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1093/brain/awaa158"],["dc.identifier.pmid","32577755"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/81225"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/283"],["dc.identifier.url","https://rdp.sfb274.de/literature/publications/29"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","TRR 274: Checkpoints of Central Nervous System Recovery"],["dc.relation","TRR 274 | B02: Inflammatory neurodegeneration and repair mechanisms in childhood onset autoimmune and neurometabolic demyelinating CNS disease"],["dc.relation.eissn","1460-2156"],["dc.relation.issn","0006-8950"],["dc.relation.workinggroup","RG Stadelmann-Nessler"],["dc.relation.workinggroup","RG Brück"],["dc.title","Molecular signature of slowly expanding lesions in progressive multiple sclerosis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2019Journal Article [["dc.bibliographiccitation.firstpage","1290"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Nature Medicine"],["dc.bibliographiccitation.lastpage","1300"],["dc.bibliographiccitation.volume","25"],["dc.contributor.author","Galli, Edoardo"],["dc.contributor.author","Hartmann, Felix J."],["dc.contributor.author","Schreiner, Bettina"],["dc.contributor.author","Ingelfinger, Florian"],["dc.contributor.author","Arvaniti, Eirini"],["dc.contributor.author","Diebold, Martin"],["dc.contributor.author","Mrdjen, Dunja"],["dc.contributor.author","van der Meer, Franziska"],["dc.contributor.author","Krieg, Carsten"],["dc.contributor.author","Nimer, Faiez Al"],["dc.contributor.author","Sanderson, Nicholas"],["dc.contributor.author","Stadelmann, Christine"],["dc.contributor.author","Khademi, Mohsen"],["dc.contributor.author","Piehl, Fredrik"],["dc.contributor.author","Claassen, Manfred"],["dc.contributor.author","Derfuss, Tobias"],["dc.contributor.author","Olsson, Tomas"],["dc.contributor.author","Becher, Burkhard"],["dc.date.accessioned","2020-12-10T18:10:04Z"],["dc.date.available","2020-12-10T18:10:04Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1038/s41591-019-0521-4"],["dc.identifier.eissn","1546-170X"],["dc.identifier.issn","1078-8956"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/73840"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","GM-CSF and CXCR4 define a T helper cell signature in multiple sclerosis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2019Conference Paper [["dc.bibliographiccitation.firstpage","26"],["dc.bibliographiccitation.volumetitle","11112"],["dc.contributor.author","Eckermann, Marina"],["dc.contributor.author","Töpperwien, Mareike"],["dc.contributor.author","Robisch, Anna Lena"],["dc.contributor.author","Meer, Franziska van der"],["dc.contributor.author","Stadelmann-Nessler, Christine"],["dc.contributor.author","Salditt, Tim"],["dc.contributor.editor","Lai, Barry"],["dc.contributor.editor","Somogyi, Andrea"],["dc.date.accessioned","2020-04-23T14:36:48Z"],["dc.date.available","2020-04-23T14:36:48Z"],["dc.date.issued","2019"],["dc.description.abstract","Recently, progress has been achieved in implementing phase contrast tomography of soft biological tissues at laboratory sources.1-4 This opens up novel opportunities for three-dimensional (3d) histology based on x-ray computed tomography (μ- and nanoCT) in direct vicinity of hospitals and biomedical research institutions. Combining novel x-ray generation and detection techniques with suitable phase reconstruction algorithms, 3d histology can be obtained even of unstained tissue of the central nervous system, as shown for example for biopsies and autopsies of human cerebellum.5, 6 Depending on the setups, in particular source, detector, and geometric parameters, laboratory-based tomography can be implemented at very different sizes and length scales. In the present work, we investigate to which extent 3d histology of neuronal tissue can take advantage of cone-beam geometry at high magnification M using a nanofocus x-ray source (Excillum AB) with a minimum spot size of 300 nm, in combination with a single-photon counting camera. Tightly approaching the source spot with the biopsy punch, we achieve high M of ≈ 101-102, high flux density and can exploit the superior efficiency of this detector technology. Results are compared with those obtained at a microfocus rotating-anode x-ray tomography setup equipped with a high resolution detector, i.e. an low-M geometry."],["dc.identifier.doi","10.1117/12.2529098"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/64334"],["dc.language.iso","en"],["dc.notes.preprint","yes"],["dc.relation.eisbn","978-1-5106-2918-9"],["dc.relation.eventend","2019-09"],["dc.relation.eventlocation","San Diego"],["dc.relation.eventstart","2017-09"],["dc.relation.isbn","978-1-5106-2917-2"],["dc.relation.iserratumof","yes"],["dc.title","Phase-contrast x-ray tomography of neuronal tissue at laboratory sources with submicron resolution"],["dc.type","conference_paper"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI