Now showing 1 - 3 of 3
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","6940"],["dc.bibliographiccitation.issue","27"],["dc.bibliographiccitation.journal","Proceedings of the National Academy of Sciences of the United States of America"],["dc.bibliographiccitation.lastpage","6945"],["dc.bibliographiccitation.volume","115"],["dc.contributor.author","Töpperwien, Mareike"],["dc.contributor.author","Meer, Franziska van der"],["dc.contributor.author","Stadelmann-Nessler, Christine"],["dc.contributor.author","Salditt, Tim"],["dc.date.accessioned","2020-03-11T09:06:18Z"],["dc.date.available","2020-03-11T09:06:18Z"],["dc.date.issued","2018"],["dc.description.abstract","To quantitatively evaluate brain tissue and its corresponding function, knowledge of the 3D cellular distribution is essential. The gold standard to obtain this information is histology, a destructive and labor-intensive technique where the specimen is sliced and examined under a light microscope, providing 3D information at nonisotropic resolution. To overcome the limitations of conventional histology, we use phase-contrast X-ray tomography with optimized optics, reconstruction, and image analysis, both at a dedicated synchrotron radiation endstation, which we have equipped with X-ray waveguide optics for coherence and wavefront filtering, and at a compact laboratory source. As a proof-of-concept demonstration we probe the 3D cytoarchitecture in millimeter-sized punches of unstained human cerebellum embedded in paraffin and show that isotropic subcellular resolution can be reached at both setups throughout the specimen. To enable a quantitative analysis of the reconstructed data, we demonstrate automatic cell segmentation and localization of over 1 million neurons within the cerebellar cortex. This allows for the analysis of the spatial organization and correlation of cells in all dimensions by borrowing concepts from condensed-matter physics, indicating a strong short-range order and local clustering of the cells in the granular layer. By quantification of 3D neuronal \"packing,\" we can hence shed light on how the human cerebellum accommodates 80% of the total neurons in the brain in only 10% of its volume. In addition, we show that the distribution of neighboring neurons in the granular layer is anisotropic with respect to the Purkinje cell dendrites."],["dc.identifier.doi","10.1073/pnas.1801678115"],["dc.identifier.pmid","29915047"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/63291"],["dc.language.iso","en"],["dc.relation.eissn","1091-6490"],["dc.relation.issn","0027-8424"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.rights","CC BY-NC-ND 4.0"],["dc.subject.gro","x-ray imaging"],["dc.subject.gro","biomedical tomography"],["dc.title","Three-dimensional virtual histology of human cerebellum by X-ray phase-contrast tomography"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","e2113835118"],["dc.bibliographiccitation.issue","48"],["dc.bibliographiccitation.journal","Proceedings of the National Academy of Sciences"],["dc.bibliographiccitation.volume","118"],["dc.contributor.author","Eckermann, Marina"],["dc.contributor.author","Schmitzer, Bernhard"],["dc.contributor.author","van der Meer, Franziska"],["dc.contributor.author","Franz, Jonas"],["dc.contributor.author","Hansen, Ove"],["dc.contributor.author","Stadelmann, Christine"],["dc.contributor.author","Salditt, Tim"],["dc.date.accessioned","2022-01-11T14:05:50Z"],["dc.date.available","2022-01-11T14:05:50Z"],["dc.date.issued","2021"],["dc.description.abstract","We have studied the three-dimensional (3D) cytoarchitecture of the human hippocampus in neuropathologically healthy and Alzheimer’s disease (AD) individuals, based on phase-contrast X-ray computed tomography of postmortem human tissue punch biopsies. In view of recent findings suggesting a nuclear origin of AD, we target in particular the nuclear structure of the dentate gyrus (DG) granule cells. Tissue samples of 20 individuals were scanned and evaluated using a highly automated approach of measurement and analysis, combining multiscale recordings, optimized phase retrieval, segmentation by machine learning, representation of structural properties in a feature space, and classification based on the theory of optimal transport. Accordingly, we find that the prototypical transformation between a structure representing healthy granule cells and the pathological state involves a decrease in the volume of granule cell nuclei, as well as an increase in the electron density and its spatial heterogeneity. The latter can be explained by a higher ratio of heterochromatin to euchromatin. Similarly, many other structural properties can be derived from the data, reflecting both the natural polydispersity of the hippocampal cytoarchitecture between different individuals in the physiological context and the structural effects associated with AD pathology."],["dc.identifier.doi","10.1073/pnas.2113835118"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/97758"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/369"],["dc.identifier.url","https://rdp.sfb274.de/literature/publications/53"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-507"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","TRR 274: Checkpoints of Central Nervous System Recovery"],["dc.relation","TRR 274 | B01: The role of inflammatory cytokine signaling for efficient remyelination in multiple sclerosis"],["dc.relation.eissn","1091-6490"],["dc.relation.issn","0027-8424"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.relation.workinggroup","RG Stadelmann-Nessler"],["dc.rights","CC BY-NC-ND 4.0"],["dc.subject.gro","biomedical tomography"],["dc.title","Three-dimensional virtual histology of the human hippocampus based on phase-contrast computed tomography"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2020Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","116523"],["dc.bibliographiccitation.journal","NeuroImage"],["dc.bibliographiccitation.volume","210"],["dc.contributor.author","Töpperwien, Mareike"],["dc.contributor.author","Meer, Franziska van der"],["dc.contributor.author","Stadelmann-Nessler, Christine"],["dc.contributor.author","Salditt, Tim"],["dc.date.accessioned","2020-03-04T13:20:09Z"],["dc.date.available","2020-03-04T13:20:09Z"],["dc.date.issued","2020"],["dc.description.abstract","Alzheimer's disease (AD) is a neurodegenerative disorder which is characterized by increasing dementia. It is accompanied by the development of extracellular β-amyloid plaques and neurofibrillary tangles in the gray matter of the brain. Histology is the gold standard for the visualization of this pathology, but also has intrinsic shortcomings. Fully three-dimensional analysis and quantitative metrics of alterations in the tissue structure require a complementary approach. In this work we use x-ray phase-contrast tomography to obtain three-dimensional reconstructions of human hippocampal tissue affected by AD. Due to intrinsic electron density differences, tissue components and structures such as the granule cells of the dentate gyrus, blood vessels, or mineralized plaques can be identified and segmented in large volumes. Based on correlative histology, protein (tau, β-amyloid) and elemental content (iron, calcium) can be attributed to certain morphological features occurring in the entire volume. In the vicinity of senile plaques, an accumulation of microglia in combination with a loss of neuronal cells can be observed."],["dc.identifier.doi","10.1016/j.neuroimage.2020.116523"],["dc.identifier.pmid","31935519"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/63101"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/26"],["dc.language.iso","en"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.eissn","1095-9572"],["dc.relation.issn","1053-8119"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.relation.workinggroup","RG Stadelmann-Nessler"],["dc.rights","CC BY-NC-ND 4.0"],["dc.subject.gro","x-ray imaging"],["dc.subject.gro","biomedical tomography"],["dc.title","Correlative x-ray phase-contrast tomography and histology of human brain tissue affected by Alzheimer's disease"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC