Now showing 1 - 2 of 2
  • 2015Journal Article
    [["dc.bibliographiccitation.artnumber","e0123085"],["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","PLOS ONE"],["dc.bibliographiccitation.lastpage","17"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Pisoni, Alberto"],["dc.contributor.author","Turi, Zsolt"],["dc.contributor.author","Raithel, Almuth"],["dc.contributor.author","Ambrus, Géza Gergely"],["dc.contributor.author","Alekseichuk, Ivan"],["dc.contributor.author","Schacht, Annekathrin"],["dc.contributor.author","Paulus, Walter"],["dc.contributor.author","Antal, Andrea"],["dc.date.accessioned","2017-09-07T11:53:43Z"],["dc.date.available","2017-09-07T11:53:43Z"],["dc.date.issued","2015"],["dc.description.abstract","There is emerging evidence from imaging studies that parietal and temporal cortices act together to achieve successful recognition of declarative information; nevertheless, the precise role of these regions remains elusive. To evaluate the role of these brain areas in declarative memory retrieval, we applied bilateral tDCS, with anode over the left and cathode over the right parietal or temporal cortices separately, during the recognition phase of a verbal learning paradigm using a balanced old-new decision task. In a parallel group design, we tested three different groups of healthy adults, matched for demographic and neurocognitive status: two groups received bilateral active stimulation of either the parietal or the temporal cortex, while a third group received sham stimulation. Accuracy, discriminability index (d’) and reaction times of recognition memory performance were measurements of interest. The d’ sensitivity index and accuracy percentage improved in both active stimulation groups, as compared with the sham one, while reaction times remained unaffected. Moreover, the analysis of accuracy revealed a different effect of tDCS for old and new item recognition. While the temporal group showed enhanced performance for old item recognition, the parietal group was better at correctly recognising new ones. Our results support an active role of both of these areas in memory retrieval, possibly underpinning different stages of the recognition process."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2015"],["dc.identifier.doi","10.1371/journal.pone.0123085"],["dc.identifier.gro","3151348"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/11758"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8142"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.relation.issn","1932-6203"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Separating Recognition Processes of Declarative Memory via Anodal tDCS: Boosting Old Item Recognition by Temporal and New Item Detection by Parietal Stimulation"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2016Journal Article
    [["dc.bibliographiccitation.artnumber","e0156134"],["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","PloS one"],["dc.bibliographiccitation.lastpage","19"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Gall, Carolin"],["dc.contributor.author","Schmidt, Sein"],["dc.contributor.author","Schittkowski, Michael P."],["dc.contributor.author","Antal, Andrea"],["dc.contributor.author","Ambrus, Géza Gergely"],["dc.contributor.author","Paulus, Walter"],["dc.contributor.author","Dannhauer, Moritz"],["dc.contributor.author","Michalik, Romualda"],["dc.contributor.author","Mante, Alf"],["dc.contributor.author","Bola, Michal"],["dc.contributor.author","Lux, Anke"],["dc.contributor.author","Kropf, Siegfried"],["dc.contributor.author","Brandt, Stephan A."],["dc.contributor.author","Sabel, Bernhard A."],["dc.contributor.editor","DeAngelis, Margaret M."],["dc.date.accessioned","2018-10-10T10:49:09Z"],["dc.date.available","2018-10-10T10:49:09Z"],["dc.date.issued","2016"],["dc.description.abstract","Vision loss after optic neuropathy is considered irreversible. Here, repetitive transorbital alternating current stimulation (rtACS) was applied in partially blind patients with the goal of activating their residual vision. Methods We conducted a multicenter, prospective, randomized, double-blind, sham-controlled trial in an ambulatory setting with daily application of rtACS (n = 45) or sham-stimulation (n = 37) for 50 min for a duration of 10 week days. A volunteer sample of patients with optic nerve damage (mean age 59.1 yrs) was recruited. The primary outcome measure for efficacy was super-threshold visual fields with 48 hrs after the last treatment day and at 2-months follow-up. Secondary outcome measures were near-threshold visual fields, reaction time, visual acuity, and resting-state EEGs to assess changes in brain physiology. Results The rtACS-treated group had a mean improvement in visual field of 24.0% which was significantly greater than after sham-stimulation (2.5%). This improvement persisted for at least 2 months in terms of both within- and between-group comparisons. Secondary analyses revealed improvements of near-threshold visual fields in the central 5° and increased thresholds in static perimetry after rtACS and improved reaction times, but visual acuity did not change compared to shams. Visual field improvement induced by rtACS was associated with EEG power-spectra and coherence alterations in visual cortical networks which are interpreted as signs of neuromodulation. Current flow simulation indicates current in the frontal cortex, eye, and optic nerve and in the subcortical but not in the cortical regions. Conclusion rtACS treatment is a safe and effective means to partially restore vision after optic nerve damage probably by modulating brain plasticity. This class 1 evidence suggests that visual fields can be improved in a clinically meaningful way."],["dc.identifier.doi","10.1371/journal.pone.0156134"],["dc.identifier.pmid","27355577"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/13506"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/15944"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation.issn","1932-6203"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Alternating Current Stimulation for Vision Restoration after Optic Nerve Damage: A Randomized Clinical Trial"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC