Options
Rizzoli, Silvio O.
Loading...
Preferred name
Rizzoli, Silvio O.
Official Name
Rizzoli, Silvio O.
Alternative Name
Rizzoli, S.
Rizzoli, S. O.
Rizzoli, Silvio
Main Affiliation
Now showing 1 - 3 of 3
2018Journal Article Research Paper [["dc.bibliographiccitation.firstpage","12247"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","ACS Nano"],["dc.bibliographiccitation.lastpage","12254"],["dc.bibliographiccitation.volume","2018"],["dc.contributor.author","Saal, Kim-A."],["dc.contributor.author","Richter, Frank"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Rizzoli, Silvio O."],["dc.date.accessioned","2019-07-09T11:50:22Z"],["dc.date.available","2019-07-09T11:50:22Z"],["dc.date.issued","2018"],["dc.description.abstract","Recent advances in optical nanoscopy have brought the imaging resolution to the size of the individual macromolecules, thereby setting stringent requirements for the fluorescent labels. Such requirements are optimally fulfilled by the incorporation of unnatural amino acids (UAAs) in the proteins of interest (POI), followed by fluorophore conjugation via click chemistry. However, this approach has been limited to single POIs in mammalian cells. Here we solve this problem by incorporating different UAAs in different POIs, which are expressed in independent cell sets. The cells are then fused, thereby combining the different proteins and organelles, and are easily imaged by dual-color super-resolution microscopy. This procedure, which we termed Fuse2Click, is simple, requires only the well-established Amber codon, and allows the use of all previously optimized UAAs and tRNA/RS pairs. This should render it a tool of choice for multi-color click-based imaging."],["dc.identifier.doi","10.1021/acsnano.8b06047"],["dc.identifier.pmid","30525434"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15921"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59757"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/47"],["dc.identifier.url","https://sfb1286.uni-goettingen.de/literature/publications/2"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/614765/EU//NEUROMOLANATOMY"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/339580/EU//MITRAC"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P09: Proteinsortierung in der Synapse: Prinzipien und molekulare Organisation"],["dc.relation","SFB 1286: Quantitative Synaptologie"],["dc.relation","SFB 1286 | A06: Mitochondrienfunktion und -umsatz in Synapsen"],["dc.relation.issn","1936-086X"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.relation.workinggroup","RG Rizzoli (Quantitative Synaptology in Space and Time)"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject.ddc","573"],["dc.subject.ddc","612"],["dc.title","Combined Use of Unnatural Amino Acids Enables Dual Color Super-Resolution Imaging of Proteins via Click Chemistry"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2018Journal Article Research Paper [["dc.bibliographiccitation.artnumber","4230"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Fornasiero, Eugenio F."],["dc.contributor.author","Mandad, Sunit"],["dc.contributor.author","Wildhagen, Hanna"],["dc.contributor.author","Alevra, Mihai"],["dc.contributor.author","Rammner, Burkhard"],["dc.contributor.author","Keihani, Sarva"],["dc.contributor.author","Opazo, Felipe"],["dc.contributor.author","Urban, Inga"],["dc.contributor.author","Ischebeck, Till"],["dc.contributor.author","Sakib, M. Sadman"],["dc.contributor.author","Fard, Maryam K."],["dc.contributor.author","Kirli, Koray"],["dc.contributor.author","Centeno, Tonatiuh Pena"],["dc.contributor.author","Vidal, Ramon O."],["dc.contributor.author","Rahman, Raza-Ur"],["dc.contributor.author","Benito, Eva"],["dc.contributor.author","Fischer, André"],["dc.contributor.author","Dennerlein, Sven"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Feussner, Ivo"],["dc.contributor.author","Bonn, Stefan"],["dc.contributor.author","Simons, Mikael"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Rizzoli, Silvio O."],["dc.date.accessioned","2019-07-09T11:46:03Z"],["dc.date.available","2019-07-09T11:46:03Z"],["dc.date.issued","2018"],["dc.description.abstract","The turnover of brain proteins is critical for organism survival, and its perturbations are linked to pathology. Nevertheless, protein lifetimes have been difficult to obtain in vivo. They are readily measured in vitro by feeding cells with isotopically labeled amino acids, followed by mass spectrometry analyses. In vivo proteins are generated from at least two sources: labeled amino acids from the diet, and non-labeled amino acids from the degradation of pre-existing proteins. This renders measurements difficult. Here we solved this problem rigorously with a workflow that combines mouse in vivo isotopic labeling, mass spectrometry, and mathematical modeling. We also established several independent approaches to test and validate the results. This enabled us to measure the accurate lifetimes of ~3500 brain proteins. The high precision of our data provided a large set of biologically significant observations, including pathway-, organelle-, organ-, or cell-specific effects, along with a comprehensive catalog of extremely long-lived proteins (ELLPs)."],["dc.identifier.doi","10.1038/s41467-018-06519-0"],["dc.identifier.pmid","30315172"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15388"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59372"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/42"],["dc.identifier.url","https://sfb1286.uni-goettingen.de/literature/publications/41"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.intern","In goescholar not merged with http://resolver.sub.uni-goettingen.de/purl?gs-1/15611 but duplicate"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/339580/EU//MITRAC"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/614765/EU//NEUROMOLANATOMY"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P09: Proteinsortierung in der Synapse: Prinzipien und molekulare Organisation"],["dc.relation","SFB 1286: Quantitative Synaptologie"],["dc.relation","SFB 1286 | A03: Dynamische Analyse der Remodellierung der extrazellulären Matrix (ECM) als Mechanismus der Synapsenorganisation und Plastizität"],["dc.relation.issn","2041-1723"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.relation.workinggroup","RG Rizzoli (Quantitative Synaptology in Space and Time)"],["dc.relation.workinggroup","RG Urlaub (Bioanalytische Massenspektrometrie)"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject.ddc","573"],["dc.subject.ddc","612"],["dc.title","Precisely measured protein lifetimes in the mouse brain reveal differences across tissues and subcellular fractions."],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2018Journal Article Research Paper [["dc.bibliographiccitation.artnumber","e45836"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","EMBO Reports"],["dc.bibliographiccitation.volume","19"],["dc.contributor.author","Truckenbrodt, Sven"],["dc.contributor.author","Maidorn, Manuel"],["dc.contributor.author","Crzan, Dagmar"],["dc.contributor.author","Wildhagen, Hanna"],["dc.contributor.author","Kabatas, Selda"],["dc.contributor.author","Rizzoli, Silvio O."],["dc.date.accessioned","2019-07-09T11:50:23Z"],["dc.date.available","2019-07-09T11:50:23Z"],["dc.date.issued","2018"],["dc.description.abstract","Expansion microscopy is a recently introduced imaging technique that achieves super-resolution through physically expanding the specimen by ~4×, after embedding into a swellable gel. The resolution attained is, correspondingly, approximately fourfold better than the diffraction limit, or ~70 nm. This is a major improvement over conventional microscopy, but still lags behind modern STED or STORM setups, whose resolution can reach 20-30 nm. We addressed this issue here by introducing an improved gel recipe that enables an expansion factor of ~10× in each dimension, which corresponds to an expansion of the sample volume by more than 1,000-fold. Our protocol, which we termed X10 microscopy, achieves a resolution of 25-30 nm on conventional epifluorescence microscopes. X10 provides multi-color images similar or even superior to those produced with more challenging methods, such as STED, STORM, and iterative expansion microscopy (iExM). X10 is therefore the cheapest and easiest option for high-quality super-resolution imaging currently available. X10 should be usable in any laboratory, irrespective of the machinery owned or of the technical knowledge."],["dc.identifier.doi","10.15252/embr.201845836"],["dc.identifier.pmid","29987134"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15927"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59762"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/54"],["dc.identifier.url","https://sfb1286.uni-goettingen.de/literature/publications/39"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/614765/EU//NEUROMOLANATOMY"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P09: Proteinsortierung in der Synapse: Prinzipien und molekulare Organisation"],["dc.relation","SFB 1286: Quantitative Synaptologie"],["dc.relation","SFB 1286 | Z03: Unkomplizierte multispektrale, superauflösende Bildgebung durch zehnfache Expansionsmikroskopie"],["dc.relation.issn","1469-3178"],["dc.relation.workinggroup","RG Rizzoli (Quantitative Synaptology in Space and Time)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","573"],["dc.subject.ddc","612"],["dc.title","X10 expansion microscopy enables 25-nm resolution on conventional microscopes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC