Now showing 1 - 10 of 13
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1675"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","Forests"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Röll, Alexander"],["dc.contributor.author","Ramesha, Mundre N."],["dc.contributor.author","Link, Roman M."],["dc.contributor.author","Hertel, Dietrich"],["dc.contributor.author","Schuldt, Bernhard"],["dc.contributor.author","Patil, Shekhargouda L."],["dc.contributor.author","Hölscher, Dirk"],["dc.date.accessioned","2022-02-01T10:31:47Z"],["dc.date.available","2022-02-01T10:31:47Z"],["dc.date.issued","2021"],["dc.description.abstract","Farmland tree cultivation is considered an important option for enhancing wood production. In South India, the native leaf-deciduous tree species Melia dubia is popular for short-rotation plantations. Across a rainfall gradient from 420 to 2170 mm year–1, we studied 186 farmland woodlots between one and nine years in age. The objectives were to identify the main factors controlling aboveground biomass (AGB) and growth rates. A power-law growth model predicts an average stand-level AGB of 93.8 Mg ha–1 for nine-year-old woodlots. The resulting average annual AGB increment over the length of the rotation cycle is 10.4 Mg ha–1 year–1, which falls within the range reported for other tropical tree plantations. When expressing the parameters of the growth model as functions of management, climate and soil variables, it explains 65% of the variance in AGB. The results indicate that water availability is the main driver of the growth of M. dubia. Compared to the effects of water availability, the effects of soil nutrients are 26% to 60% smaller. We conclude that because of its high biomass accumulation rates in farm forestry, M. dubia is a promising candidate for short-rotation plantations in South India and beyond."],["dc.description.abstract","Farmland tree cultivation is considered an important option for enhancing wood production. In South India, the native leaf-deciduous tree species Melia dubia is popular for short-rotation plantations. Across a rainfall gradient from 420 to 2170 mm year–1, we studied 186 farmland woodlots between one and nine years in age. The objectives were to identify the main factors controlling aboveground biomass (AGB) and growth rates. A power-law growth model predicts an average stand-level AGB of 93.8 Mg ha–1 for nine-year-old woodlots. The resulting average annual AGB increment over the length of the rotation cycle is 10.4 Mg ha–1 year–1, which falls within the range reported for other tropical tree plantations. When expressing the parameters of the growth model as functions of management, climate and soil variables, it explains 65% of the variance in AGB. The results indicate that water availability is the main driver of the growth of M. dubia. Compared to the effects of water availability, the effects of soil nutrients are 26% to 60% smaller. We conclude that because of its high biomass accumulation rates in farm forestry, M. dubia is a promising candidate for short-rotation plantations in South India and beyond."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2021"],["dc.identifier.doi","10.3390/f12121675"],["dc.identifier.pii","f12121675"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/98945"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-517"],["dc.relation.eissn","1999-4907"],["dc.relation.orgunit","Abteilung Waldbau und Waldökologie der Tropen"],["dc.rights","CC BY 4.0"],["dc.title","Water Availability Controls the Biomass Increment of Melia dubia in South India"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2004Journal Article
    [["dc.bibliographiccitation.firstpage","43"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Plant and Soil"],["dc.bibliographiccitation.lastpage","56"],["dc.bibliographiccitation.volume","258"],["dc.contributor.author","Leuschner, Christoph"],["dc.contributor.author","Hertel, Dietrich"],["dc.contributor.author","Schmid, Iris"],["dc.contributor.author","Koch, Oliver"],["dc.contributor.author","Muhs, Annette"],["dc.contributor.author","Hölscher, Dirk"],["dc.date.accessioned","2017-09-07T11:45:39Z"],["dc.date.available","2017-09-07T11:45:39Z"],["dc.date.issued","2004"],["dc.description.abstract","Only very limited information exists on the plasticity in size and structure of fine root systems, and fine root morphology of mature trees as a function of environmental variation. Six northwest German old-growth beech forests (Fagus sylvatica L.) differing in precipitation (520 – 1030 mm year−1) and soil acidity/fertility (acidic infertile to basic fertile) were studied by soil coring for stand totals of fine root biomass (0–40 cm plus organic horizons), vertical and horizontal root distribution patterns, the fine root necromass/biomass ratio, and fine root morphology (root specific surface area, root tip frequency, and degree of mycorrhizal infection). Stand total of fine root biomass, and vertical and horizontal fine root distribution patterns were similar in beech stands on acidic infertile and basic fertile soils. In five of six stands, stand fine root biomass ranged between 320 and 470 g m−2; fine root density showed an exponential decrease with soil depth in all profiles irrespective of soil type. An exceptionally small stand fine root biomass (<150 g m−2) was found in the driest stand with 520 mm year−1 of rainfall. In all stands, fine root morphological parameters changed markedly from the topsoil to the lower profile; differences in fine root morphology among the six stands, however, were remarkably small. Two parameters, the necromass/biomass ratio and fine root tip density (tips per soil volume), however, were both much higher in acidic than basic soils. We conclude that variation in soil acidity and fertility only weakly influences fine root system size and morphology of F. sylvatica, but affects root system structure and, probably, fine root mortality. It is hypothesized that high root tip densities in acidic infertile soils compensate for low nutrient supply rates, and large necromasses are a consequence of adverse soil chemical conditions. Data from a literature survey support the view that rainfall is another major environmental factor that influences the stand fine root biomass of F. sylvatica."],["dc.identifier.doi","10.1023/b:plso.0000016508.20173.80"],["dc.identifier.gro","3149055"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/5698"],["dc.language.iso","en"],["dc.notes.intern","Hoelscher Crossref import"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.relation.issn","0032-079X"],["dc.title","Stand fine root biomass and fine root morphology in old-growth beech forests as a function of precipitation and soil fertility"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2011Journal Article
    [["dc.bibliographiccitation.firstpage","619"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Journal of Applied Ecology"],["dc.bibliographiccitation.lastpage","629"],["dc.bibliographiccitation.volume","48"],["dc.contributor.author","Tscharntke, Teja"],["dc.contributor.author","Clough, Yann"],["dc.contributor.author","Bhagwat, Shonil A."],["dc.contributor.author","Buchori, Damayanti"],["dc.contributor.author","Faust, Heiko"],["dc.contributor.author","Hertel, Dietrich"],["dc.contributor.author","Hölscher, Dirk"],["dc.contributor.author","Juhrbandt, Jana"],["dc.contributor.author","Kessler, Michael"],["dc.contributor.author","Perfecto, Ivette"],["dc.contributor.author","Scherber, Christoph"],["dc.contributor.author","Schroth, Götz"],["dc.contributor.author","Veldkamp, Edzo"],["dc.contributor.author","Wanger, Thomas C."],["dc.date.accessioned","2017-09-07T11:54:53Z"],["dc.date.available","2017-09-07T11:54:53Z"],["dc.date.issued","2011"],["dc.description.abstract","1. Agricultural intensification reduces ecological resilience of land-use systems, whereas paradoxically, environmental change and climate extremes require a higher response capacity than ever. Adaptation strategies to environmental change include maintenance of shade trees in tropical agroforestry, but conversion of shaded to unshaded systems is common practice to increase short-term yield.2. In this paper, we review the short-term and long-term ecological benefits of shade trees in coffee Coffea arabica, C. canephora and cacao Theobroma cacao agroforestry and emphasize the poorly understood, multifunctional role of shade trees for farmers and conservation alike.3. Both coffee and cacao are tropical understorey plants. Shade trees in agroforestry enhance functional biodiversity, carbon sequestration, soil fertility, drought resistance as well as weed and biological pest control. However, shade is needed for young cacao trees only and is less important in older cacao plantations. This changing response to shade regime with cacao plantation age often results in a transient role for shade and associated biodiversity in agroforestry.4. Abandonment of old, unshaded cacao in favour of planting young cacao in new, thinned forest sites can be named ‘short-term cacao boom-and-bust cycle’, which counteracts tropical forest conservation. In a ‘long-term cacao boom-and-bust cycle’, cacao boom can be followed by cacao bust due to unmanageable pest and pathogen levels (e.g. in Brazil and Malaysia). Higher pest densities can result from physiological stress in unshaded cacao and from the larger cacao area planted. Risk-averse farmers avoid long-term vulnerability of their agroforestry systems by keeping shade as an insurance against insect pest outbreaks, whereas yield-maximizing farmers reduce shade and aim at short-term monetary benefits.5. Synthesis and applications. Sustainable agroforestry management needs to conserve or create a diverse layer of multi-purpose shade trees that can be pruned rather than removed when crops mature. Incentives from payment-for-ecosystem services and certification schemes encourage farmers to keep high to medium shade tree cover. Reducing pesticide spraying protects functional agrobiodiversity such as antagonists of pests and diseases, pollinating midges determining cacao yields and pollinating bees enhancing coffee yield. In a landscape perspective, natural forest alongside agroforestry allows noncrop-crop spillover of a diversity of functionally important organisms. Knowledge transfer between farmers, agronomists and ecologists in a participatory approach helps to encourage a shade management regime that balances economic and ecological needs and provides a ‘diversified food-and-cash crop’ livelihood strategy."],["dc.identifier.doi","10.1111/j.1365-2664.2010.01939.x"],["dc.identifier.gro","3150127"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/6857"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation.issn","0021-8901"],["dc.subject","agricultural intensification; Arabica and Robusta coffee; boom-and-bust cycles; cacao yield; ecological-economic trade-offs; ecological resilience; functional biodiversity; household vulnerability"],["dc.title","Multifunctional shade-tree management in tropical agroforestry landscapes - a review"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","349"],["dc.bibliographiccitation.issue","1-2"],["dc.bibliographiccitation.journal","Plant and Soil"],["dc.bibliographiccitation.lastpage","369"],["dc.bibliographiccitation.volume","422"],["dc.contributor.author","Rajab, Yasmin Abou"],["dc.contributor.author","Hölscher, Dirk"],["dc.contributor.author","Leuschner, Christoph"],["dc.contributor.author","Barus, Henry"],["dc.contributor.author","Tjoa, Aiyen"],["dc.contributor.author","Hertel, Dietrich"],["dc.date.accessioned","2018-01-09T15:04:15Z"],["dc.date.available","2018-01-09T15:04:15Z"],["dc.date.issued","2018"],["dc.description.abstract","Background and Aims To increase yield, cacao is planted increasingly in unshaded monocultures, replacing a more traditional cultivation under shade. We investigated how shade tree cover and species diversity affect the root system and its dynamics. Methods In a replicated study in Sulawesi (Indonesia), we studied the fine and coarse root system down to 3 m soil depth in three modern and more traditional cacao cultivation systems: unshaded cacao monoculture (Cacao-mono), cacao under either the legume Gliricidia sepium (Cacao-Gliricidia), or a diverse (> 6 species) shade tree cover (Cacao-multi). We analysed the vertical distribution of fine, large and coarse roots as well as fine root production, turnover and morphology on the species level. Results Stand-level fine root biomass showed a doubling with increasing shade tree cover (from 206 to 432 g m−2), but a tendency for a decrease in cacao fine root biomass. The presence of Gliricidia roots seemed to shift the cacao fine roots to a more shallow distribution, while the presence of shade tree roots in the Cacao-multi systems caused a biomass reduction and relative downward shift of the cacao roots. The turnover of cacao fine roots was much higher in the Cacao-multi stands than in the other two cultivation systems, although stand-level root production remained unchanged across the three systems. According to the stable isotope signature, Gliricidia extracted water from deeper soil layers than cacao, while no soil water partitioning was observed in the Cacao-multi stands. Conclusions Our data suggest that the cacao trees altered their fine root distribution patterns in response to root competition. Both interspecific competition and root system segregation seem to play an important role in cacao agroforests with different shade tree cover."],["dc.identifier.doi","10.1007/s11104-017-3456-x"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11617"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.notes.status","final"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | B | B04: Pflanzenproduktivität und Ressourcenaufteilung im Wurzelraum entlang von Gradienten tropischer Landnutzungsintensität und Baumartenvielfalt"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","Effects of shade tree cover and diversity on root system structure and dynamics in cacao agroforests"],["dc.title.subtitle","The role of root competition and space partitioning"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","160"],["dc.bibliographiccitation.journal","Agricultural and Forest Meteorology"],["dc.bibliographiccitation.lastpage","171"],["dc.bibliographiccitation.volume","274"],["dc.contributor.author","Röll, Alexander"],["dc.contributor.author","Niu, F."],["dc.contributor.author","Meijide Orive, Ana"],["dc.contributor.author","Ahongshangbam, J."],["dc.contributor.author","Ehbrecht, M."],["dc.contributor.author","Guillaume, T."],["dc.contributor.author","Gunawan, D."],["dc.contributor.author","Hardanto, A."],["dc.contributor.author","Hendrayanto, null"],["dc.contributor.author","Hertel, Dietrich"],["dc.contributor.author","Kotowska, M.M."],["dc.contributor.author","Kreft, H."],["dc.contributor.author","Kuzyakov, Yakov"],["dc.contributor.author","Leuschner, Christoph"],["dc.contributor.author","Nomura, M."],["dc.contributor.author","Polle, Andrea"],["dc.contributor.author","Rembold, K."],["dc.contributor.author","Sahner, J."],["dc.contributor.author","Seidel, Dominik"],["dc.contributor.author","Zemp, D.C."],["dc.contributor.author","Knohl, Alexander"],["dc.contributor.author","Hölscher, Dirk"],["dc.date.accessioned","2019-11-14T15:27:44Z"],["dc.date.available","2019-11-14T15:27:44Z"],["dc.date.issued","2019"],["dc.description.abstract","Following large-scale conversion of rainforest, rubber and oil palm plantations dominate lowland Sumatra (Indonesia) and other parts of South East Asia today, with potentially far-reaching ecohydrological consequences. We assessed how such land-use change affects plant transpiration by sap flux measurements at 42 sites in selectively logged rainforests, agroforests and rubber and oil palm monoculture plantations in the lowlands of Sumatra. Site-to-site variability in stand-scale transpiration and tree-level water use were explained by stand structure, productivity, soil properties and plantation age. Along a land-use change trajectory forest-rubber-oil palm, time-averaged transpiration decreases by 43 ± 11% from forest to rubber monoculture plantations, but rebounds with conversion to smallholder oil palm plantations. We uncovered that particularly commercial, intensive oil palm cultivation leads to high transpiration (827 ± 77 mm yr −1), substantially surpassing rates at our forest sites (589 ± 52 mm yr −1). Compared to smallholder oil palm, land-use intensification leads to 1.7-times higher transpiration in commercial plantations. Combined with severe soil degradation, the high transpiration may cause periodical water scarcity for humans in oil palm-dominated landscapes. As oil palm is projected to further expand, severe shifts in water cycling after land-cover change and water scarcity due to land-use intensification may become more widesprea"],["dc.identifier.doi","10.1016/j.agrformet.2019.04.017"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/62625"],["dc.language.iso","en"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | A | A02: Wassernutzungseigenschaften von Bäumen und Palmen in Regenwald-Transformationssystemen Zusammenfassung"],["dc.relation","SFB 990 | A | A03: Untersuchung von Land-Atmosphäre Austauschprozesse in Landnutzungsänderungs-Systemen"],["dc.relation","SFB 990 | A | A04: Carbon stock, turnover and functions in heavily weathered soils under lowland rainforest transformation systems"],["dc.relation","SFB 990 | B | B04: Pflanzenproduktivität und Ressourcenaufteilung im Wurzelraum entlang von Gradienten tropischer Landnutzungsintensität und Baumartenvielfalt"],["dc.relation","SFB 990 | B | B06: Taxonomische, funktionelle, phylogenetische und biogeographische Diversität vaskulärer Pflanzen in Regenwald-Transformationssystemen auf Sumatra (Indonesien)"],["dc.relation","SFB 990 | B | B07: Functional diversity of mycorrhizal fungi along a tropical land-use gradient"],["dc.relation","SFB 990 | B | B11: Biodiversitäts-Anreicherung in Ölpalmen-Plantagen: Pflanzliche Sukzession und Integration"],["dc.relation.issn","0168-1923"],["dc.relation.orgunit","Zentrum für Biodiversität und Nachhaltige Landnutzung"],["dc.relation.orgunit","Department für Nutzpflanzenwissenschaften"],["dc.relation.orgunit","Fakultät für Agrarwissenschaften"],["dc.relation.orgunit","Abteilung Pflanzenbau"],["dc.relation.orgunit","Abteilung Bioklimatologie"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","Transpiration on the rebound in lowland Sumatra"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2002Journal Article
    [["dc.bibliographiccitation.firstpage","668"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Journal of Plant Nutrition and Soil Science"],["dc.bibliographiccitation.lastpage","674"],["dc.bibliographiccitation.volume","165"],["dc.contributor.author","Hölscher, Dirk"],["dc.contributor.author","Hertel, Dietrich"],["dc.contributor.author","Koenies, Horst"],["dc.date.accessioned","2017-09-07T11:45:38Z"],["dc.date.available","2017-09-07T11:45:38Z"],["dc.date.issued","2002"],["dc.description.abstract","In the natural forest communities of Central Europe, beech (Fagus sylvatica L.) predominates in the tree layer over a wide range of soil conditions. An exception with respect to the dominance of beech are skeleton-rich soils such as screes where up to 10 broad-leaved trees co-exist. In such a Tilia-Fagus-Fraxinus-Acer-Ulmus forest and an adjacent mono-specific beech forest we compared (1) soil nutrient pools and net nitrogen mineralization rates, (2) leaf nutrient levels, and (3) leaf litter production and stem increment rates in order to evaluate the relationship between soil conditions and tree species composition. In the mixed forest only a small quantity of fine earth was present (35 g l—1) which was distributed in patches between basalt stones; whereas a significantly higher (P < 0.05) soil quantity (182 g l—1) was found in the beech forest. In the soil patches of the mixed forest C and N concentrations and also concentrations of exchangeable nutrients (K, Ca, Mg) were significantly higher than in the beech forest. Net N mineralization rates on soil dry weight basis in the mixed forest exceeded those in the beech forest by a factor of 2.6. Due to differences in fine earth and stone contents, the volume related soil K pool and the N mineralization rate were lower in the mixed forest (52 kg N ha—1 yr—1, 0—10 cm depth) than in the beech forest (105 kg N ha—1 yr—1). The leaf N and K concentrations of the beech trees did not differ significantly between the stands, which suggests that plant nutrition was not impaired. In the mixed forest leaf litter fall (11 %) and the increment rate of stem basal area (52 %) were lower than in the beech forest. Thus, compared with the adjacent beech forest, the mixed forest stand was characterized by a low volume of patchy distributed nutrient-rich soil, a lower volume related K pool and N mineralization rate, and low rates of stem increment. Together with other factors such as water availability these patterns may contribute to an explanation of the diverse tree species composition on Central European screes."],["dc.identifier.doi","10.1002/jpln.200290001"],["dc.identifier.gro","3149062"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/5706"],["dc.language.iso","en"],["dc.notes.intern","Hoelscher Crossref import"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.relation.issn","1436-8730"],["dc.title","Soil nutrient supply and biomass production in a mixed forest on a skeleton-rich soil and an adjacent beech forest"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.journal","Frontiers in Forests and Global Change"],["dc.bibliographiccitation.volume","3"],["dc.contributor.affiliation","Kotowska, Martyna M.; 1Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Göttingen, Germany"],["dc.contributor.affiliation","Link, Roman M.; 1Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Göttingen, Germany"],["dc.contributor.affiliation","Röll, Alexander; 3Tropical Silviculture and Forest Ecology, University of Goettingen, Göttingen, Germany"],["dc.contributor.affiliation","Hertel, Dietrich; 1Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Göttingen, Germany"],["dc.contributor.affiliation","Hölscher, Dirk; 3Tropical Silviculture and Forest Ecology, University of Goettingen, Göttingen, Germany"],["dc.contributor.affiliation","Waite, Pierre-André; 1Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Göttingen, Germany"],["dc.contributor.affiliation","Moser, Gerald; 4Plant Ecology, Justus Liebig University of Giessen, Giessen, Germany"],["dc.contributor.affiliation","Tjoa, Aiyen; 5Department of Agrotechnology, Faculty of Agricultural Sciences, Tadulako University, Palu, Indonesia"],["dc.contributor.affiliation","Leuschner, Christoph; 1Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Göttingen, Germany"],["dc.contributor.affiliation","Schuldt, Bernhard; 1Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Göttingen, Germany"],["dc.contributor.author","Kotowska, Martyna M."],["dc.contributor.author","Link, Roman M."],["dc.contributor.author","Röll, Alexander"],["dc.contributor.author","Hertel, Dietrich"],["dc.contributor.author","Hölscher, Dirk"],["dc.contributor.author","Waite, Pierre-André"],["dc.contributor.author","Moser, Gerald"],["dc.contributor.author","Tjoa, Aiyen"],["dc.contributor.author","Leuschner, Christoph"],["dc.contributor.author","Schuldt, Bernhard"],["dc.date.accessioned","2021-05-17T16:13:19Z"],["dc.date.accessioned","2021-10-27T13:11:43Z"],["dc.date.available","2021-05-17T16:13:19Z"],["dc.date.available","2021-10-27T13:11:43Z"],["dc.date.issued","2021"],["dc.date.updated","2022-09-06T14:25:58Z"],["dc.description.abstract","The efficiency of the water transport system in trees sets physical limits to their productivity and water use. Although the coordination of carbon assimilation and hydraulic functions has long been documented, the mutual inter-relationships between wood anatomy, water use and productivity have not yet been jointly addressed in comprehensive field studies. Based on observational data from 99 Indonesian rainforest tree species from 37 families across 22 plots, we analyzed how wood anatomy and sap flux density relate to tree size and wood density, and tested their combined influence on aboveground biomass increment (ABI) and daily water use (DWU). Results from pairwise correlations were compared to the outcome of a structural equation model (SEM). Across species, we found a strong positive correlation between ABI and DWU. Wood hydraulic anatomy was more closely related to these indicators of plant performance than wood density. According to the SEM, the common effect of average tree size and sap flux density on the average stem increment and water use of a species was sufficient to fully explain the observed correlation between these variables. Notably, after controlling for average size, only a relatively small indirect effect of wood properties on stem increment and water use remained that was mediated by sap flux density, which was significantly higher for species with lighter and hydraulically more efficient wood. We conclude that wood hydraulic traits are mechanistically linked to water use and productivity via their influence on sap flow, but large parts of these commonly observed positive relationships can be attributed to confounding size effects."],["dc.description.sponsorship","Open-Access-Publikation 2020"],["dc.identifier.doi","10.3389/ffgc.2020.598759"],["dc.identifier.doi","10.3389/ffgc.2020.598759.s001"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/17787"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/91618"],["dc.language.iso","en"],["dc.notes.intern","Migrated from goescholar"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | A | A02: Wassernutzungseigenschaften von Bäumen und Palmen in Regenwald-Transformationssystemen Zusammenfassung"],["dc.relation","SFB 990 | B | B04: Pflanzenproduktivität und Ressourcenaufteilung im Wurzelraum entlang von Gradienten tropischer Landnutzungsintensität und Baumartenvielfalt"],["dc.relation.eissn","2624-893X"],["dc.relation.orgunit","Fakultät für Biologie und Psychologie"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject.ddc","570"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","Effects of wood hydraulic properties on water use and productivity of tropical rainforest trees"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2006Book Chapter
    [["dc.bibliographiccitation.firstpage","283"],["dc.bibliographiccitation.lastpage","297"],["dc.bibliographiccitation.seriesnr","185"],["dc.contributor.author","Hertel, Dietrich"],["dc.contributor.author","Hölscher, Dirk"],["dc.contributor.author","Köhler, Lars"],["dc.contributor.author","Leuschner, Christoph"],["dc.contributor.editor","Kappelle, Maarten"],["dc.date.accessioned","2017-09-07T11:45:32Z"],["dc.date.available","2017-09-07T11:45:32Z"],["dc.date.issued","2006"],["dc.description.abstract","This case study on successional forest stages in the Cordillera de Talamanca showed that conversion of the old-growth forest led to significant changes not only in above-ground stand structure, but also in the carbon and nutrient pools of the soil. Consequently, below-ground structure of the two secondary and the old-growth forest differed markedly: we found an increase in biomass, surface area, and root tip abundance of the fine root system with increasing age of the forests. Whether this is a consequence of an increasing nutrient demand of the mid- and late-successional forests remains unclear. A progressive decoupling of the nutrient cycle between trees and mineral soil, and the simultaneous build-up of large nutrient pools in the organic layer with secondary succession most likely is one cause of the enlargement of the fine root system in this organic horizon. Review of available literature data showed that the total fine root mass (live and dead total) of secondary forests in the humid tropics seems to increase with stand age. This trend was found to be more pronounced at sites with more acidic soils. Increases in both fine root necromass and in fine root biomass with secondary succession are thought to be responsible for high root masses in late-successional forests. Comparison with data from other tropical forests confirmed that a large fine root biomass, as recorded in the old-growth forest in this study, is a typical attribute of tropical high-elevation forests. Although high fine root biomasses are also found in certain tropical lowland forests, forests above 2,000 m a.s.l. had significantly higher biomasses than those at lower altitudes. It is hypothesised that reduced nutrient availability is a key factor for this elevational increase in fine root biomass."],["dc.identifier.doi","10.1007/3-540-28909-7_22"],["dc.identifier.gro","3149036"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/5681"],["dc.language.iso","en"],["dc.notes.intern","Hoelscher Crossref import"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.publisher","Springer"],["dc.publisher.place","Berlin/Heidelberg"],["dc.relation.crisseries","Ecological Studies"],["dc.relation.doi","10.1007/3-540-28909-7"],["dc.relation.isbn","978-3-540-28908-1"],["dc.relation.ispartof","Ecology and Conservation of Neotropical Montane Oak Forests"],["dc.relation.ispartofseries","Ecological studies; 185"],["dc.relation.issn","0070-8356"],["dc.title","Changes in Fine Root System Size and Structure During Secondary Succession in a Costa Rican Montane Oak Forest"],["dc.type","book_chapter"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2010Journal Article
    [["dc.bibliographiccitation.firstpage","171"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Agroforestry Systems"],["dc.bibliographiccitation.lastpage","187"],["dc.bibliographiccitation.volume","79"],["dc.contributor.author","Moser, G."],["dc.contributor.author","Leuschner, C."],["dc.contributor.author","Hertel, D."],["dc.contributor.author","Hölscher, D."],["dc.contributor.author","Köhler, M."],["dc.contributor.author","Leitner, D."],["dc.contributor.author","Michalzik, B."],["dc.contributor.author","Prihastanti, E."],["dc.contributor.author","Tjitrosemito, S."],["dc.contributor.author","Schwendenmann, L."],["dc.date.accessioned","2017-09-07T11:45:34Z"],["dc.date.available","2017-09-07T11:45:34Z"],["dc.date.issued","2010"],["dc.description.abstract","In South-east Asia, ENSO-related droughts represent irregularly occurring hazards for agroforestry systems containing cocoa which are predicted to increase in severity with expected climate warming. To characterize the drought response of mature cocoa trees, we conducted the Sulawesi Throughfall Displacement Experiment in a shaded (Gliricidia sepium) cocoa agroforestry system in Central Sulawesi, Indonesia. Three large sub-canopy roofs were installed to reduce throughfall by about 80% over a 13-month period to test the hypotheses that (i) cocoa trees are sensitive to drought due to their shallow fine root system, and (ii) bean yield is more sensitive to drought than leaf or stem growth. As 83% of fine root (diameter <2 mm) and 86% of coarse root biomass (>2 mm) was located in the upper 40 cm of the soil, the cocoa trees examined had a very shallow root system. Cocoa and Gliricidia differed in their vertical rooting patterns, thereby reducing competition for water. Despite being exposed for several months to soil water contents close to the conventional wilting point, cocoa trees showed no significant decreases in leaf biomass, stem and branch wood production or fine root biomass. Possible causes are active osmotic adjustment in roots, mitigation of drought stress by shading from Gliricidia or other factors. By contrast, production of cocoa beans was significantly reduced in the roof plots, supporting reports of substantial reductions in bean yields during ENSO-related drought events in the region. We conclude that cocoa possesses traits related to drought tolerance which enable it to maintain biomass production during extended dry periods, whereas bean yield appears to be particularly drought sensitive."],["dc.identifier.doi","10.1007/s10457-010-9303-1"],["dc.identifier.gro","3149046"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/4251"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/5690"],["dc.language.iso","en"],["dc.notes.intern","Hoelscher Crossref import"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.relation.issn","0167-4366"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Response of cocoa trees (Theobroma cacao) to a 13-month desiccation period in Sulawesi, Indonesia"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2022Journal Article
    [["dc.bibliographiccitation.artnumber","S037811272100966X"],["dc.bibliographiccitation.firstpage","119875"],["dc.bibliographiccitation.journal","Forest Ecology and Management"],["dc.bibliographiccitation.volume","505"],["dc.contributor.author","Ramesha, Mundre N."],["dc.contributor.author","Link, Roman M."],["dc.contributor.author","Paligi, Sharath S."],["dc.contributor.author","Hertel, Dietrich"],["dc.contributor.author","Röll, Alexander"],["dc.contributor.author","Hölscher, Dirk"],["dc.contributor.author","Schuldt, Bernhard"],["dc.date.accessioned","2022-04-01T10:02:25Z"],["dc.date.available","2022-04-01T10:02:25Z"],["dc.date.issued","2022"],["dc.identifier.doi","10.1016/j.foreco.2021.119875"],["dc.identifier.pii","S037811272100966X"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/105905"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-530"],["dc.relation.issn","0378-1127"],["dc.rights.uri","https://www.elsevier.com/tdm/userlicense/1.0/"],["dc.title","Variability in growth-determining hydraulic wood and leaf traits in Melia dubia across a steep water availability gradient in southern India"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI