Options
Hertel, Dietrich
Loading...
Preferred name
Hertel, Dietrich
Official Name
Hertel, Dietrich
Alternative Name
Hertel, D.
Main Affiliation
Now showing 1 - 2 of 2
2021Journal Article Research Paper [["dc.bibliographiccitation.journal","Frontiers in Forests and Global Change"],["dc.bibliographiccitation.volume","3"],["dc.contributor.affiliation","Kotowska, Martyna M.; 1Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Göttingen, Germany"],["dc.contributor.affiliation","Link, Roman M.; 1Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Göttingen, Germany"],["dc.contributor.affiliation","Röll, Alexander; 3Tropical Silviculture and Forest Ecology, University of Goettingen, Göttingen, Germany"],["dc.contributor.affiliation","Hertel, Dietrich; 1Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Göttingen, Germany"],["dc.contributor.affiliation","Hölscher, Dirk; 3Tropical Silviculture and Forest Ecology, University of Goettingen, Göttingen, Germany"],["dc.contributor.affiliation","Waite, Pierre-André; 1Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Göttingen, Germany"],["dc.contributor.affiliation","Moser, Gerald; 4Plant Ecology, Justus Liebig University of Giessen, Giessen, Germany"],["dc.contributor.affiliation","Tjoa, Aiyen; 5Department of Agrotechnology, Faculty of Agricultural Sciences, Tadulako University, Palu, Indonesia"],["dc.contributor.affiliation","Leuschner, Christoph; 1Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Göttingen, Germany"],["dc.contributor.affiliation","Schuldt, Bernhard; 1Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Göttingen, Germany"],["dc.contributor.author","Kotowska, Martyna M."],["dc.contributor.author","Link, Roman M."],["dc.contributor.author","Röll, Alexander"],["dc.contributor.author","Hertel, Dietrich"],["dc.contributor.author","Hölscher, Dirk"],["dc.contributor.author","Waite, Pierre-André"],["dc.contributor.author","Moser, Gerald"],["dc.contributor.author","Tjoa, Aiyen"],["dc.contributor.author","Leuschner, Christoph"],["dc.contributor.author","Schuldt, Bernhard"],["dc.date.accessioned","2021-05-17T16:13:19Z"],["dc.date.accessioned","2021-10-27T13:11:43Z"],["dc.date.available","2021-05-17T16:13:19Z"],["dc.date.available","2021-10-27T13:11:43Z"],["dc.date.issued","2021"],["dc.date.updated","2022-09-06T14:25:58Z"],["dc.description.abstract","The efficiency of the water transport system in trees sets physical limits to their productivity and water use. Although the coordination of carbon assimilation and hydraulic functions has long been documented, the mutual inter-relationships between wood anatomy, water use and productivity have not yet been jointly addressed in comprehensive field studies. Based on observational data from 99 Indonesian rainforest tree species from 37 families across 22 plots, we analyzed how wood anatomy and sap flux density relate to tree size and wood density, and tested their combined influence on aboveground biomass increment (ABI) and daily water use (DWU). Results from pairwise correlations were compared to the outcome of a structural equation model (SEM). Across species, we found a strong positive correlation between ABI and DWU. Wood hydraulic anatomy was more closely related to these indicators of plant performance than wood density. According to the SEM, the common effect of average tree size and sap flux density on the average stem increment and water use of a species was sufficient to fully explain the observed correlation between these variables. Notably, after controlling for average size, only a relatively small indirect effect of wood properties on stem increment and water use remained that was mediated by sap flux density, which was significantly higher for species with lighter and hydraulically more efficient wood. We conclude that wood hydraulic traits are mechanistically linked to water use and productivity via their influence on sap flow, but large parts of these commonly observed positive relationships can be attributed to confounding size effects."],["dc.description.sponsorship","Open-Access-Publikation 2020"],["dc.identifier.doi","10.3389/ffgc.2020.598759"],["dc.identifier.doi","10.3389/ffgc.2020.598759.s001"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/17787"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/91618"],["dc.language.iso","en"],["dc.notes.intern","Migrated from goescholar"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | A | A02: Wassernutzungseigenschaften von Bäumen und Palmen in Regenwald-Transformationssystemen Zusammenfassung"],["dc.relation","SFB 990 | B | B04: Pflanzenproduktivität und Ressourcenaufteilung im Wurzelraum entlang von Gradienten tropischer Landnutzungsintensität und Baumartenvielfalt"],["dc.relation.eissn","2624-893X"],["dc.relation.orgunit","Fakultät für Biologie und Psychologie"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject.ddc","570"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","Effects of wood hydraulic properties on water use and productivity of tropical rainforest trees"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2019Journal Article [["dc.bibliographiccitation.artnumber","330"],["dc.bibliographiccitation.journal","Frontiers in Plant Science"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Göbel, Leonie"],["dc.contributor.author","Coners, Heinz"],["dc.contributor.author","Hertel, Dietrich"],["dc.contributor.author","Willinghöfer, Sandra"],["dc.contributor.author","Leuschner, Christoph"],["dc.date.accessioned","2019-07-09T11:51:18Z"],["dc.date.available","2019-07-09T11:51:18Z"],["dc.date.issued","2019"],["dc.description.abstract","In high-elevation grasslands, plants can encounter periods with high air temperature while the soil remains cold, which may lead to a temporary mismatch in the physiological activity of leaves and roots. In a climate chamber experiment with graminoid species from three elevations (4400, 2400, and 250 m a.s.l.), we tested the hypothesis that soil temperature can influence photosynthesis and stomatal conductance independently of air temperature. Soil monoliths with swards of Kobresia pygmaea (high alpine), Nardus stricta (lower alpine), and Deschampsia flexuosa (upper lowland) were exposed to soil temperatures of 25, 15, 5, and -2°C and air temperatures of 20 and 10°C for examining the effect of independent soil and air temperature variation on photosynthesis, leaf dark respiration, and stomatal conductance and transpiration. Soil frost (-2°C) had a strong negative effect on gas exchange and stomatal conductance in all three species, independent of the elevation of origin. Leaf dark respiration was stimulated by soil frost in D. flexuosa, but not in K. pygmaea, which also had a lower temperature optimum of photosynthesis. Soil cooling from 15 to 5°C did not significantly reduce stomatal conductance and gas exchange in any of the species. We conclude that all three graminoids are able to maintain a relatively high root water uptake in cold, non-frozen soil, but the high-alpine K. pygmaea seems to be especially well adapted to warm shoot - cold root episodes, as it has a higher photosynthetic activity at 10 than 20°C air temperature and does not up-regulate leaf dark respiration upon soil freezing, as was observed in the grasses from warmer climates."],["dc.identifier.doi","10.3389/fpls.2019.00330"],["dc.identifier.pmid","30936890"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16097"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59919"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.publisher","Frontiers Media S.A."],["dc.relation.eissn","1664-462X"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","570"],["dc.title","The Role of Low Soil Temperature for Photosynthesis and Stomatal Conductance of Three Graminoids From Different Elevations"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC