Options
Silva Guerreiro, Patricia da
Loading...
Preferred name
Silva Guerreiro, Patricia da
Official Name
Silva Guerreiro, Patricia da
Alternative Name
da Silva Guerreiro, Patricia
Silva Guerreiro, P. da
da Silva Guerreiro, P.
Guerreiro, Patricia
Guerreiro, P.
Guerreiro, PatrĂcia S.
Guerreiro, PatrĂcia Silva
Guerreiro, PatrĂcia
Main Affiliation
Now showing 1 - 5 of 5
2012Journal Article [["dc.bibliographiccitation.firstpage","11750"],["dc.bibliographiccitation.issue","34"],["dc.bibliographiccitation.journal","Journal of Neuroscience"],["dc.bibliographiccitation.lastpage","11762"],["dc.bibliographiccitation.volume","32"],["dc.contributor.author","Diogenes, Maria Jose"],["dc.contributor.author","Dias, Raquel B."],["dc.contributor.author","Rombo, Diogo M."],["dc.contributor.author","Vicente Miranda, Hugo"],["dc.contributor.author","Maiolino, Francesca"],["dc.contributor.author","Guerreiro, Patricia S."],["dc.contributor.author","Nasstrom, Thomas"],["dc.contributor.author","Franquelim, Henri G."],["dc.contributor.author","Oliveira, Luis M. A."],["dc.contributor.author","Castanho, Miguel A. R. B."],["dc.contributor.author","Lannfelt, Lars"],["dc.contributor.author","Bergstrom, Joakim"],["dc.contributor.author","Ingelsson, Martin"],["dc.contributor.author","Quintas, Alexandre"],["dc.contributor.author","Sebastiao, Ana Maria"],["dc.contributor.author","Lopes, Luisa Vaqueiro"],["dc.contributor.author","Outeiro, Tiago Fleming"],["dc.date.accessioned","2018-11-07T09:07:07Z"],["dc.date.available","2018-11-07T09:07:07Z"],["dc.date.issued","2012"],["dc.description.abstract","Parkinson's disease (PD) is the most common representative of a group of disorders known as synucleinopathies, in which misfolding and aggregation of alpha-synuclein (a-syn) in various brain regions is the major pathological hallmark. Indeed, the motor symptoms in PD are caused by a heterogeneous degeneration of brain neurons not only in substantia nigra pars compacta but also in other extrastriatal areas of the brain. In addition to the well known motor dysfunction in PD patients, cognitive deficits and memory impairment are also an important part of the disorder, probably due to disruption of synaptic transmission and plasticity in extrastriatal areas, including the hippocampus. Here, we investigated the impact of a-syn aggregation on AMPA and NMDA receptor-mediated rat hippocampal (CA3-CA1) synaptic transmission and long-term potentiation (LTP), the neurophysiological basis for learning and memory. Our data show that prolonged exposure to a-syn oligomers, but not monomers or fibrils, increases basal synaptic transmission through NMDA receptor activation, triggering enhanced contribution of calcium-permeable AMPA receptors. Slices treated with a-syn oligomers were unable to respond with further potentiation to theta-burst stimulation, leading to impaired LTP. Prior delivery of a low-frequency train reinstated the ability to express LTP, implying that exposure to a-syn oligomers drives the increase of glutamatergic synaptic transmission, preventing further potentiation by physiological stimuli. Our novel findings provide mechanistic insight on how a-syn oligomers may trigger neuronal dysfunction and toxicity in PD and other synucleinopathies."],["dc.identifier.doi","10.1523/JNEUROSCI.0234-12.2012"],["dc.identifier.isi","000308140500021"],["dc.identifier.pmid","22915117"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/9413"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/25717"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Soc Neuroscience"],["dc.relation.issn","0270-6474"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Extracellular Alpha-Synuclein Oligomers Modulate Synaptic Transmission and Impair LTP Via NMDA-Receptor Activation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2012Journal Article [["dc.bibliographiccitation.firstpage","513"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Journal of Molecular Medicine"],["dc.bibliographiccitation.lastpage","522"],["dc.bibliographiccitation.volume","91"],["dc.contributor.author","Guerreiro, PatrĂcia"],["dc.contributor.author","Huang, Yue"],["dc.contributor.author","Gysbers, Amanda"],["dc.contributor.author","Cheng, Danni"],["dc.contributor.author","Gai, Wei"],["dc.contributor.author","Outeiro, Tiago"],["dc.contributor.author","Halliday, Glenda"],["dc.date.accessioned","2019-07-09T11:39:48Z"],["dc.date.available","2019-07-09T11:39:48Z"],["dc.date.issued","2012"],["dc.description.abstract","Mutations in the genes encoding leucine-rich repeat kinase 2 (LRRK2) and α-synuclein are associated with both autosomal dominant and idiopathic forms of Parkinson’s disease (PD). α-Synuclein is the main protein in Lewy bodies, hallmark inclusions present in both sporadic and familial PD. We show that in PD brain tissue, the levels of LRRK2 are positively related to the increase in α-synuclein phosphorylation and aggregation in affected brain regions (amygdala and anterior cingulate cortex), but not in the unaffected visual cortex. In disease-affected regions, we show co-localization of these two proteins in neurons and Lewy body inclusions. Further, in vitro experiments show a molecular interaction between α-synuclein and LRRK2 under endogenous and over-expression conditions. In a cell culture model of α-synuclein inclusion formation, LRRK2 co-localizes with the α-synuclein inclusions, and knocking down LRRK2 increases the number of smaller inclusions. In addition to providing strong evidence for an interaction between LRRK2 and α-synuclein, our results shed light on the complex relationship between these two proteins in the brains of patients with PD and the underlying molecular mechanisms of the disease."],["dc.identifier.doi","10.1007/s00109-012-0984-y"],["dc.identifier.fs","593038"],["dc.identifier.pmid","23183827"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/10277"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/58037"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.publisher","Springer"],["dc.publisher.place","Berlin/Heidelberg"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/241791/EU/European Project on Mendelian Forms of Parkinson’s Disease/MEFOPA"],["dc.relation.euproject","MEFOPA"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","LRRK2 interactions with α-synuclein in Parkinson’s disease brains and in cell models"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2014Journal Article Research Paper [["dc.bibliographiccitation.artnumber","e1004741"],["dc.bibliographiccitation.journal","PLoS Genetics"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Lazaro, Diana F."],["dc.contributor.author","Rodrigues, Eva F."],["dc.contributor.author","Langohr, Ramona"],["dc.contributor.author","Shahpasandzadeh, Hedieh"],["dc.contributor.author","Ribeiro, Thales"],["dc.contributor.author","Guerreiro, Patricia"],["dc.contributor.author","Gerhardt, Ellen"],["dc.contributor.author","Kroehnert, Katharina"],["dc.contributor.author","Klucken, Jochen"],["dc.contributor.author","Pereira, Marcos D."],["dc.contributor.author","Popova, Blagovesta"],["dc.contributor.author","Kruse, Niels"],["dc.contributor.author","Mollenhauer, Brit"],["dc.contributor.author","Rizzoli, Silvio"],["dc.contributor.author","Braus, Gerhard H."],["dc.contributor.author","Danzer, Karin M."],["dc.contributor.author","Outeiro, Tiago F."],["dc.date.accessioned","2017-09-07T11:45:25Z"],["dc.date.available","2017-09-07T11:45:25Z"],["dc.date.issued","2014"],["dc.description.abstract","Aggregation of alpha-synuclein (ASYN) in Lewy bodies and Lewy neurites is the typical pathological hallmark of Parkinson's disease (PD) and other synucleinopathies. Furthermore, mutations in the gene encoding for ASYN are associated with familial and sporadic forms of PD, suggesting this protein plays a central role in the disease. However, the precise contribution of ASYN to neuronal dysfunction and death is unclear. There is intense debate about the nature of the toxic species of ASYN and little is known about the molecular determinants of oligomerization and aggregation of ASYN in the cell. In order to clarify the effects of different mutations on the propensity of ASYN to oligomerize and aggregate, we assembled a panel of 19 ASYN variants and compared their behaviour. We found that familial mutants linked to PD (A30P, E46K, H50Q, G51D and A53T) exhibited identical propensities to oligomerize in living cells, but had distinct abilities to form inclusions. While the A30P mutant reduced the percentage of cells with inclusions, the E46K mutant had the opposite effect. Interestingly, artificial proline mutants designed to interfere with the helical structure of the N-terminal domain, showed increased propensity to form oligomeric species rather than inclusions. Moreover, lysine substitution mutants increased oligomerization and altered the pattern of aggregation. Altogether, our data shed light into the molecular effects of ASYN mutations in a cellular context, and established a common ground for the study of genetic and pharmacological modulators of the aggregation process, opening new perspectives for therapeutic intervention in PD and other synucleinopathies."],["dc.identifier.doi","10.1371/journal.pgen.1004741"],["dc.identifier.gro","3142024"],["dc.identifier.isi","000345455200011"],["dc.identifier.pmid","25393002"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/11136"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/3701"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1553-7404"],["dc.relation.issn","1553-7390"],["dc.rights","CC BY 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/3.0"],["dc.title","Systematic Comparison of the Effects of Alpha-synuclein Mutations on Its Oligomerization and Aggregation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2021Journal Article Research Paper [["dc.bibliographiccitation.journal","Frontiers in Cellular Neuroscience"],["dc.bibliographiccitation.volume","15"],["dc.contributor.author","Jacinto, Sandra"],["dc.contributor.author","Guerreiro, PatrĂcia"],["dc.contributor.author","de Oliveira, Rita Machado"],["dc.contributor.author","Cunha-Oliveira, Teresa"],["dc.contributor.author","Santos, Maria JoĂŁo"],["dc.contributor.author","Grazina, Manuela"],["dc.contributor.author","Rego, Ana Cristina"],["dc.contributor.author","Outeiro, Tiago F."],["dc.date.accessioned","2021-04-14T08:27:59Z"],["dc.date.available","2021-04-14T08:27:59Z"],["dc.date.issued","2021"],["dc.description.abstract","Mutations in the MPV17 gene are associated with hepatocerebral form of mitochondrial depletion syndrome. The mechanisms through which MPV17 mutations cause respiratory chain dysfunction and mtDNA depletion is still unclear. The MPV17 gene encodes an inner membrane mitochondrial protein that was recently described to function as a non-selective channel. Although its exact function is unknown, it is thought to be important in the maintenance of mitochondrial membrane potential (ΔΨm). To obtain more information about the role of MPV17 in human disease, we investigated the effect of MPV17 knockdown and of selected known MPV17 mutations associated with MPV17 disease in vitro. We used different approaches in order to evaluate the cellular consequences of MPV17 deficiency. We found that lower levels of MPV17 were associated with impaired mitochondrial respiration and with a quiescent energetic metabolic profile. All the mutations studied destabilized the protein, resulting in reduced protein levels. We also demonstrated that different mutations caused different cellular abnormalities, including increased ROS production, decreased oxygen consumption, loss of ΔΨm, and mislocalization of MPV17 protein. Our study provides novel insight into the molecular effects of MPV17 mutations and opens novel possibilities for testing therapeutic strategies for a devastating group of disorders."],["dc.identifier.doi","10.3389/fncel.2021.641264"],["dc.identifier.pmid","33815063"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/82469"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/304"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.eissn","1662-5102"],["dc.relation.workinggroup","RG Outeiro (Experimental Neurodegeneration)"],["dc.rights","CC BY 4.0"],["dc.title","MPV17 Mutations Are Associated With a Quiescent Energetic Metabolic Profile"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2017Journal Article [["dc.bibliographiccitation.artnumber","e2000374"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","PLoS Biology"],["dc.bibliographiccitation.volume","15"],["dc.contributor.author","de Oliveira, Rita Machado"],["dc.contributor.author","Miranda, Hugo Vicente"],["dc.contributor.author","Francelle, Laetitia"],["dc.contributor.author","Pinho, Raquel"],["dc.contributor.author","Szegoe, Eva Monika"],["dc.contributor.author","Martinho, Renato"],["dc.contributor.author","Munari, Francesca"],["dc.contributor.author","Lazaro, Diana F."],["dc.contributor.author","Moniot, Sebastien"],["dc.contributor.author","Guerreiro, Patricia S."],["dc.contributor.author","Fonseca, Luis"],["dc.contributor.author","Marijanovic, Zrinka"],["dc.contributor.author","Antas, Pedro"],["dc.contributor.author","Gerhardt, Ellen"],["dc.contributor.author","Enguita, Francisco Javier"],["dc.contributor.author","Fauvet, Bruno"],["dc.contributor.author","Penque, Deborah"],["dc.contributor.author","Pais, Teresa Faria"],["dc.contributor.author","Tong, Qiang"],["dc.contributor.author","Becker, Stefan"],["dc.contributor.author","Kuegler, Sebastian"],["dc.contributor.author","Lashuel, Hilal Ahmed"],["dc.contributor.author","Steegborn, Clemens"],["dc.contributor.author","Zweckstetter, Markus"],["dc.contributor.author","Outeiro, Tiago Fleming"],["dc.date.accessioned","2018-11-07T10:26:48Z"],["dc.date.available","2018-11-07T10:26:48Z"],["dc.date.issued","2017"],["dc.description.abstract","Sirtuin genes have been associated with aging and are known to affect multiple cellular pathways. Sirtuin 2 was previously shown to modulate proteotoxicity associated with ageassociated neurodegenerative disorders such as Alzheimer and Parkinson disease (PD). However, the precise molecular mechanisms involved remain unclear. Here, we provide mechanistic insight into the interplay between sirtuin 2 and alpha-synuclein, the major component of the pathognomonic protein inclusions in PD and other synucleinopathies. We found that alpha-synuclein is acetylated on lysines 6 and 10 and that these residues are deacetylated by sirtuin 2. Genetic manipulation of sirtuin 2 levels in vitro and in vivo modulates the levels of alpha-synuclein acetylation, its aggregation, and autophagy. Strikingly, mutants blocking acetylation exacerbate alpha-synuclein toxicity in vivo, in the substantia nigra of rats. Our study identifies alpha-synuclein acetylation as a key regulatory mechanism governing alpha-synuclein aggregation and toxicity, demonstrating the potential therapeutic value of sirtuin 2 inhibition in synucleinopathies."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2017"],["dc.identifier.doi","10.1371/journal.pbio.2000374"],["dc.identifier.isi","000397909600002"],["dc.identifier.pmid","28257421"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14377"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/43121"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Public Library Science"],["dc.relation.haserratum","/handle/2/102935"],["dc.relation.issn","1545-7885"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","The mechanism of sirtuin 2-mediated exacerbation of alpha-synuclein toxicity in models of Parkinson disease"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS