Options
Robisch, Anna Lena
Loading...
Preferred name
Robisch, Anna Lena
Official Name
Robisch, Anna Lena
Alternative Name
Robisch, A. L.
Robisch, Anna-Lena
Robisch, A.-L.
Now showing 1 - 10 of 13
2018Journal Article Research Paper [["dc.bibliographiccitation.firstpage","24"],["dc.bibliographiccitation.issue","S2"],["dc.bibliographiccitation.journal","Microscopy and Microanalysis"],["dc.bibliographiccitation.lastpage","25"],["dc.bibliographiccitation.volume","24"],["dc.contributor.author","Töpperwien, Mareike"],["dc.contributor.author","Eckermann, Marina"],["dc.contributor.author","Robisch, Anna Lena"],["dc.contributor.author","Stadelmann, Christine"],["dc.contributor.author","Salditt, Tim"],["dc.date.accessioned","2020-03-04T13:40:15Z"],["dc.date.available","2020-03-04T13:40:15Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1017/S1431927618012540"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/63109"],["dc.language.iso","en"],["dc.relation.issn","1431-9276"],["dc.relation.issn","1435-8115"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.subject.gro","x-ray imaging"],["dc.subject.gro","biomedical tomography"],["dc.title","3d Virtual Histology of Human Cerebellum by Propagation-Based X-Ray Phase-Contrast Tomography"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI2016Journal Article Research Paper [["dc.bibliographiccitation.firstpage","5519"],["dc.bibliographiccitation.issue","23"],["dc.bibliographiccitation.journal","Optics Letters"],["dc.bibliographiccitation.lastpage","5522"],["dc.bibliographiccitation.volume","41"],["dc.contributor.author","Robisch, A. -L."],["dc.contributor.author","Wallentin, J."],["dc.contributor.author","Pacureanu, A."],["dc.contributor.author","Cloetens, P."],["dc.contributor.author","Salditt, T."],["dc.date.accessioned","2018-04-23T11:49:03Z"],["dc.date.available","2018-04-23T11:49:03Z"],["dc.date.issued","2016"],["dc.description.abstract","We have performed near-field x-ray imaging with simultaneous object and probe reconstruction. By an advanced ptychographic algorithm based on longitudinal and lateral translations, full-field images of nanoscale objects are reconstructed with quantitative contrast values, along with the extended wavefronts used to illuminate the objects. The imaging scheme makes idealizing assumptions on the probe obsolete, and efficiently disentangles phase shifts related to the object from the imperfections in the illumination. We validate this approach by comparison to the conventional reconstruction scheme without simultaneous probe retrieval, based on the contrast transfer function algorithm. To this end, a set of semiconductor nanowires with controlled chemical composition (InP core, insulating SiO2 layer, and indium tin oxide cover) is imaged using the quasi-point source illumination realized by the hard x-ray nanofocus (26  nm×39  nm spot size) of the ID16A Nano-Imaging beamline at the European Synchrotron Radiation Facility."],["dc.identifier.doi","10.1364/ol.41.005519"],["dc.identifier.gro","3142480"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13631"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/110083"],["dc.language.iso","en"],["dc.notes.intern","lifescience updates Crossref Import"],["dc.notes.status","final"],["dc.relation.eissn","1539-4794"],["dc.relation.issn","0146-9592"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.subject.gro","x-ray imaging"],["dc.title","Holographic imaging with a hard x-ray nanoprobe: ptychographic versus conventional phase retrieval"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI2013Journal Article Research Paper [["dc.bibliographiccitation.firstpage","23345"],["dc.bibliographiccitation.issue","20"],["dc.bibliographiccitation.journal","Optics Express"],["dc.bibliographiccitation.lastpage","23357"],["dc.bibliographiccitation.volume","21"],["dc.contributor.author","Robisch, Anna-Lena"],["dc.contributor.author","Salditt, Tim"],["dc.date.accessioned","2017-09-07T11:47:06Z"],["dc.date.available","2017-09-07T11:47:06Z"],["dc.date.issued","2013"],["dc.description.abstract","Full field x-ray propagation imaging can be severely deteriorated by wave front aberrations. Here we present an extension of ptychographic phase retrieval with simultaneous probe and object reconstruction suitable for the near-field diffractive imaging setting. Update equations used to iteratively solve the phase problem from a set of near-field images in view of reconstruction both object and probe are derived. The algorithm is tested based on numerical simulations including photon shot noise. The results indicate that the approach provides an efficient way to overcome restrictive idealizations of the illumination wave in the near-field (propagation) imaging. (C) 2013 Optical Society of America"],["dc.identifier.doi","10.1364/OE.21.023345"],["dc.identifier.gro","3142271"],["dc.identifier.isi","000325549800033"],["dc.identifier.pmid","24104248"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/6431"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1094-4087"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.subject.gro","x-ray imaging"],["dc.title","Phase retrieval for object and probe using a series of defocus near-field images"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2013Journal Article Research Paper [["dc.bibliographiccitation.firstpage","19311"],["dc.bibliographiccitation.issue","16"],["dc.bibliographiccitation.journal","Optics Express"],["dc.bibliographiccitation.lastpage","19323"],["dc.bibliographiccitation.volume","21"],["dc.contributor.author","Döring, Florian"],["dc.contributor.author","Robisch, Anna-Lena"],["dc.contributor.author","Eberl, Christian"],["dc.contributor.author","Osterhoff, Markus"],["dc.contributor.author","Ruhlandt, Aike"],["dc.contributor.author","Liese, Tobias"],["dc.contributor.author","Schlenkrich, Felix"],["dc.contributor.author","Hoffmann, S."],["dc.contributor.author","Bartels, Matthias"],["dc.contributor.author","Salditt, Tim"],["dc.contributor.author","Krebs, Hans-Ulrich"],["dc.date.accessioned","2020-11-05T15:05:23Z"],["dc.date.available","2020-11-05T15:05:23Z"],["dc.date.issued","2013"],["dc.description.abstract","Compound optics such as lens systems can overcome the limitations concerning resolution, efficiency, or aberrations which fabrication constraints would impose on any single optical element. In this work we demonstrate unprecedented sub-5 nm point focusing of hard x-rays, based on the combination of a high gain Kirkpatrick-Baez (KB) mirror system and a high resolution W/Si multilayer zone plate (MZP) for ultra-short focal length f. The pre-focusing allows limiting the MZP radius to below 2 mu m, compatible with the required 5 nm structure width and essentially unlimited aspect ratios, provided by enabling fabrication technology based on pulsed laser deposition (PLD) and focused ion beam (FIB). (c) 2013 Optical Society of America"],["dc.identifier.doi","10.1364/OE.21.019311"],["dc.identifier.gro","3142308"],["dc.identifier.isi","000323049900072"],["dc.identifier.pmid","23938848"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/68456"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-352.6"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation","SFB 755: Nanoscale Photonic Imaging"],["dc.relation.eissn","1094-4087"],["dc.relation.issn","1094-4087"],["dc.relation.orgunit","Institut für Materialphysik"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.subject.gro","x-ray optics"],["dc.title","Sub-5 nm hard x-ray point focusing by a combined Kirkpatrick-Baez mirror and multilayer zone plate"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2013Conference Paper [["dc.bibliographiccitation.artnumber","884802"],["dc.bibliographiccitation.volume","8848"],["dc.contributor.author","Osterhoff, Markus"],["dc.contributor.author","Bartels, Matthias"],["dc.contributor.author","Döring, Florian"],["dc.contributor.author","Eberl, Christian"],["dc.contributor.author","Hoinkes, Thomas"],["dc.contributor.author","Hoffmann-Urlaub, Sarah"],["dc.contributor.author","Liese, Tobias"],["dc.contributor.author","Radisch, Volker"],["dc.contributor.author","Rauschenbeutel, Arno"],["dc.contributor.author","Robisch, Anna Lena"],["dc.contributor.author","Ruhlandt, Aike"],["dc.contributor.author","Schlenkrich, Felix"],["dc.contributor.author","Salditt, Tim"],["dc.contributor.author","Krebs, Hans Ulrich"],["dc.contributor.editor","Goto, Shunji"],["dc.contributor.editor","Morawe, Christian"],["dc.contributor.editor","Khounsary, Ali"],["dc.date.accessioned","2020-02-24T13:39:51Z"],["dc.date.available","2020-02-24T13:39:51Z"],["dc.date.issued","2013"],["dc.description.abstract","We present experiments carried out using a combined hard x-ray focusing set-up preserving the benefits of a large-aperture Kirckpatrick-Baez (KB) mirror system and a small focal length multilayer zone plane (MZP). The high gain KB mirrors produce a pre-focus of 400 nm × 200 nm; in their defocus, two MZP lenses of diameter of 1.6 μm and 3.7 μm have been placed, with focal lengths of 50 μm and 250 μm respectively. The lenses have been produced using pulsed laser deposition (PLD) and focused ion beam (FIB). Forward simulations including error models based on measured deviations, auto-correlation analysis and three-plane phase reconstruction support two-dimensional focus sizes of 4.3 nm × 4.7 nm (7:9 keV, W/Si)1 and 4.3 nm ×5.9 nm (13:8 keV, W/ZrO2), respectively."],["dc.identifier.doi","10.1117/12.2025389"],["dc.identifier.gro","3145113"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2814"],["dc.language.iso","en"],["dc.notes.intern","Crossref Import"],["dc.notes.status","final"],["dc.relation.conference","SPIE"],["dc.relation.crisseries","Proceedings of SPIE"],["dc.relation.eventend","2013-08-28"],["dc.relation.eventlocation","San Diego"],["dc.relation.eventstart","2013"],["dc.relation.isbn","978-0-8194-9698-0"],["dc.relation.ispartof","Advances in X-ray/EUV optics and components VIII"],["dc.relation.ispartofseries","Proceedings of SPIE; 8848"],["dc.relation.issn","0277-786X"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.subject.gro","x-ray optics"],["dc.title","Two-dimensional sub-5-nm hard x-ray focusing with MZP"],["dc.type","conference_paper"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI2019Conference Paper [["dc.bibliographiccitation.firstpage","3"],["dc.bibliographiccitation.volume","11113"],["dc.contributor.author","Robisch, Anna Lena"],["dc.contributor.author","Eckermann, Marina"],["dc.contributor.author","Töpperwien, Mareike"],["dc.contributor.author","Meer, Franziska van der"],["dc.contributor.author","Stadelmann-Nessler, Christine"],["dc.contributor.author","Salditt, Tim"],["dc.contributor.editor","Müller, Bert"],["dc.contributor.editor","Wang, Ge"],["dc.date.accessioned","2020-04-23T12:45:49Z"],["dc.date.available","2020-04-23T12:45:49Z"],["dc.date.issued","2019"],["dc.description.abstract","X-ray cone-beam holo-tomography of unstained tissue from the human central nervous system reveals details down to sub-cellular length scales.1 This visualization of variations in the electron density of the sample is based on phase contrast techniques using intensities formed by self-interference of the beam between object and detector. Phase retrieval inverts diffraction and overcomes the phase problem by constraints such as several measurements at different Fresnel numbers for a single projection. Therefore, the object-to-detector distance (defocus) can be varied. However, for cone beam geometry, changing defocus changes magnification, which can be problematic in view of image processing and resolution. Alternatively, the photon energy can be altered (multi-E). Far from absorption edges, multi-E data yield the wavelength independent electron density. In this contribution we present multi-E holo-tomography at the GINIX setup of the P10 beamline at DESY. The instrument is based on a combined optics of elliptical mirrors and an x-ray waveguide positioned in the focal plane for further coherence, spatial Filtering and high numerical aperture.2 Previous results showed the suitability of this instrument for nanoscale tomography of unstained brain tissue.1 We demonstrate that upon energy variation, the focal spot is stable enough for imaging. To this end, a double crystal monochromator and automated alignment routines are required. Three tomograms of human brain tissue were recorded and jointly analyzed using phase retrieval based on the contrast transfer function formalism generalized to multiple photon energies. Variations of the electron density of the sample are successfully reconstructed. © (2019) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only."],["dc.identifier.doi","10.1117/12.2529041"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/64294"],["dc.language.iso","en"],["dc.notes.preprint","yes"],["dc.relation.eisbn","978-1-5106-2920-2"],["dc.relation.eventend","2019-09"],["dc.relation.eventlocation","San Diego"],["dc.relation.eventstart","2019-09"],["dc.relation.isbn","978-1-5106-2919-6"],["dc.relation.iserratumof","yes"],["dc.title","Nanoscale x-ray holo-tomography of human brain tissue with phase retrieval based on multiphoton energy recordings"],["dc.type","conference_paper"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2021Journal Article Research Paper [["dc.bibliographiccitation.firstpage","1413"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","Chem Catalysis"],["dc.bibliographiccitation.lastpage","1426"],["dc.bibliographiccitation.volume","1"],["dc.contributor.author","Werny, Maximilian J."],["dc.contributor.author","Valadian, Roozbeh"],["dc.contributor.author","Lohse, Leon Merten"],["dc.contributor.author","Robisch, Anna-Lena"],["dc.contributor.author","Zanoni, Silvia"],["dc.contributor.author","Hendriksen, Coen"],["dc.contributor.author","Weckhuysen, Bert M."],["dc.contributor.author","Meirer, Florian"],["dc.date.accessioned","2022-08-26T08:30:45Z"],["dc.date.available","2022-08-26T08:30:45Z"],["dc.date.issued","2021"],["dc.identifier.doi","10.1016/j.checat.2021.10.008"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/113255"],["dc.language.iso","en"],["dc.relation.issn","2667-1093"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.subject.gro","x-ray scattering"],["dc.title","X-ray nanotomography uncovers morphological heterogeneity in a polymerization catalyst at multiple reaction stages"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2020Book Chapter [["dc.bibliographiccitation.firstpage","35"],["dc.bibliographiccitation.lastpage","70"],["dc.bibliographiccitation.seriesnr","134"],["dc.contributor.author","Salditt, Tim"],["dc.contributor.author","Robisch, Anna-Lena"],["dc.contributor.editor","Salditt, Tim"],["dc.contributor.editor","Egner, Alexander"],["dc.contributor.editor","Luke, D. Russell"],["dc.date.accessioned","2021-04-21T11:15:36Z"],["dc.date.available","2021-04-21T11:15:36Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1007/978-3-030-34413-9_2"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/84264"],["dc.relation","SFB 755: Nanoscale Photonic Imaging"],["dc.relation.crisseries","Topics in Applied Physics"],["dc.relation.doi","10.1007/978-3-030-34413-9"],["dc.relation.eisbn","978-3-030-34413-9"],["dc.relation.isbn","978-3-030-34412-2"],["dc.relation.ispartof","Nanoscale Photonic Imaging"],["dc.relation.ispartofseries","Topics in Applied Physics; 134"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.subject.gro","SFB 755"],["dc.title","Coherent X-ray Imaging"],["dc.type","book_chapter"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2019Conference Paper [["dc.bibliographiccitation.firstpage","26"],["dc.bibliographiccitation.volumetitle","11112"],["dc.contributor.author","Eckermann, Marina"],["dc.contributor.author","Töpperwien, Mareike"],["dc.contributor.author","Robisch, Anna Lena"],["dc.contributor.author","Meer, Franziska van der"],["dc.contributor.author","Stadelmann-Nessler, Christine"],["dc.contributor.author","Salditt, Tim"],["dc.contributor.editor","Lai, Barry"],["dc.contributor.editor","Somogyi, Andrea"],["dc.date.accessioned","2020-04-23T14:36:48Z"],["dc.date.available","2020-04-23T14:36:48Z"],["dc.date.issued","2019"],["dc.description.abstract","Recently, progress has been achieved in implementing phase contrast tomography of soft biological tissues at laboratory sources.1-4 This opens up novel opportunities for three-dimensional (3d) histology based on x-ray computed tomography (μ- and nanoCT) in direct vicinity of hospitals and biomedical research institutions. Combining novel x-ray generation and detection techniques with suitable phase reconstruction algorithms, 3d histology can be obtained even of unstained tissue of the central nervous system, as shown for example for biopsies and autopsies of human cerebellum.5, 6 Depending on the setups, in particular source, detector, and geometric parameters, laboratory-based tomography can be implemented at very different sizes and length scales. In the present work, we investigate to which extent 3d histology of neuronal tissue can take advantage of cone-beam geometry at high magnification M using a nanofocus x-ray source (Excillum AB) with a minimum spot size of 300 nm, in combination with a single-photon counting camera. Tightly approaching the source spot with the biopsy punch, we achieve high M of ≈ 101-102, high flux density and can exploit the superior efficiency of this detector technology. Results are compared with those obtained at a microfocus rotating-anode x-ray tomography setup equipped with a high resolution detector, i.e. an low-M geometry."],["dc.identifier.doi","10.1117/12.2529098"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/64334"],["dc.language.iso","en"],["dc.notes.preprint","yes"],["dc.relation.eisbn","978-1-5106-2918-9"],["dc.relation.eventend","2019-09"],["dc.relation.eventlocation","San Diego"],["dc.relation.eventstart","2017-09"],["dc.relation.isbn","978-1-5106-2917-2"],["dc.relation.iserratumof","yes"],["dc.title","Phase-contrast x-ray tomography of neuronal tissue at laboratory sources with submicron resolution"],["dc.type","conference_paper"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2015Journal Article [["dc.bibliographiccitation.artnumber","029905"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Physical Review A"],["dc.bibliographiccitation.volume","91"],["dc.contributor.author","Homann, C."],["dc.contributor.author","Hohage, Thorsten"],["dc.contributor.author","Hagemann, Johannes"],["dc.contributor.author","Robisch, Anna-Lena"],["dc.contributor.author","Salditt, Tim"],["dc.date.accessioned","2017-09-07T11:44:35Z"],["dc.date.available","2017-09-07T11:44:35Z"],["dc.date.issued","2015"],["dc.identifier.doi","10.1103/PhysRevA.91.029905"],["dc.identifier.gro","3141953"],["dc.identifier.isi","000350102100013"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2913"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1094-1622"],["dc.relation.issn","1050-2947"],["dc.relation.orgunit","Institut für Numerische und Angewandte Mathematik"],["dc.subject.gro","x-ray optics and imaging"],["dc.title","Validity of the empty-beam correction in near-field imaging"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]Details DOI WOS