Options
Nitsche, Michael A.
Loading...
Preferred name
Nitsche, Michael A.
Official Name
Nitsche, Michael A.
Alternative Name
Nitsche, Michael A.
Nitsche, Michael
Nitsche, M. A.
Nitsche, M.
Now showing 1 - 10 of 162
2007Journal Article [["dc.bibliographiccitation.firstpage","14442"],["dc.bibliographiccitation.issue","52"],["dc.bibliographiccitation.journal","Journal of Neuroscience"],["dc.bibliographiccitation.lastpage","14447"],["dc.bibliographiccitation.volume","27"],["dc.contributor.author","Kuo, Min-Fang"],["dc.contributor.author","Grosch, Jan"],["dc.contributor.author","Fregni, Felipe"],["dc.contributor.author","Paulus, Walter J."],["dc.contributor.author","Nitsche, Michael A."],["dc.date.accessioned","2018-11-07T10:43:58Z"],["dc.date.available","2018-11-07T10:43:58Z"],["dc.date.issued","2007"],["dc.description.abstract","Cholinergic neuromodulation is pivotal for arousal, attention, and cognitive processes. Loss or dysregulation of cholinergic inputs leads to cognitive impairments like those manifested in Alzheimer's disease. Such dysfunction can be at least partially restored by an increase of acetylcholine (ACh). In animal studies, ACh selectively facilitates long-term excitability changes induced by feed-forward afferent input. Consequently, it has been hypothesized that ACh enhances the signal-to-noise ratio of input processing. However, the neurophysiological foundation for its ability to enhance cognition in humans is not well documented. In this study we explore the effects of rivastigmine, a cholinesterase inhibitor, on global and synapse-specific forms of cortical plasticity induced by transcranial direct current stimulation (tDCS) and paired associative stimulation (PAS) on 10-12 healthy subjects, respectively. Rivastigmine essentially blocked the induction of the global excitability enhancement elicited by anodal tDCS and revealed a tendency to first reduce and then stabilize cathodal tDCS-induced inhibitory aftereffects. However, ACh enhanced the synapse-specific excitability enhancement produced by facilitatory PAS and consolidated the inhibitory PAS-induced excitability diminution. These findings are in line with a cholinergic focusing effect that optimizes the detection of relevant signals during information processing in humans."],["dc.identifier.doi","10.1523/JNEUROSCI.4104-07.2007"],["dc.identifier.isi","000251911100024"],["dc.identifier.pmid","18160652"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/47168"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Soc Neuroscience"],["dc.relation.issn","0270-6474"],["dc.title","Focusing effect of acetylcholine on neuroplasticity in the human motor cortex"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2014Journal Article [["dc.bibliographiccitation.firstpage","10701"],["dc.bibliographiccitation.issue","32"],["dc.bibliographiccitation.journal","Journal of Neuroscience"],["dc.bibliographiccitation.lastpage","10709"],["dc.bibliographiccitation.volume","34"],["dc.contributor.author","Fresnoza, Shane"],["dc.contributor.author","Stiksrud, Elisabeth"],["dc.contributor.author","Klinker, Florian"],["dc.contributor.author","Liebetanz, David"],["dc.contributor.author","Paulus, Walter J."],["dc.contributor.author","Kuo, Min-Fang"],["dc.contributor.author","Nitsche, Michael A."],["dc.date.accessioned","2018-11-07T09:36:45Z"],["dc.date.available","2018-11-07T09:36:45Z"],["dc.date.issued","2014"],["dc.description.abstract","The neuromodulator dopamine plays an important role in synaptic plasticity. The effects depend on receptor subtypes, affinity, concentration level, and the kind of neuroplasticity induced. In animal experiments, dopamine D-2-like receptor stimulation revealed partially antagonistic effects on plasticity, which might be explained by dosage dependency. In humans, D-2 receptor block abolishes plasticity, and the D-2/D-3, but predominantly D-3, receptor agonist ropinirol has a dosage-dependent nonlinear affect on plasticity. Here we aimed to determine the specific affect of D-2 receptor activation on neuroplasticity in humans, because physiological effects of D-2 and D-3 receptors might differ. Therefore, we combined application of the selective D-2 receptor agonist bromocriptine (2.5, 10, and 20 mg or placebo medication) with anodal and cathodal transcranial direct current stimulation (tDCS), which induces nonfocal plasticity, and with paired associative stimulation (PAS) generating a more focal kind of plasticity in the motor cortex of healthy humans. Plasticity was monitored by transcranial magnetic stimulation-induced motor-evoked potential amplitudes. For facilitatory tDCS, bromocriptine prevented plasticity induction independent from drug dosage. However, its application resulted in an inverted U-shaped dose-response curve on inhibitory tDCS, excitability-diminishing PAS, and to a minor degree on excitability-enhancing PAS. These data support the assumption that modulation of D-2-like receptor activity exerts a nonlinear dose-dependent effect on neuroplasticity in the human motor cortex that differs from predominantly D-3 receptor activation and that the kind of plasticity-induction procedure is relevant for its specific impact."],["dc.description.sponsorship","German Research Foundation [NI 683/6-1]"],["dc.identifier.doi","10.1523/JNEUROSCI.0832-14.2014"],["dc.identifier.isi","000341017300023"],["dc.identifier.pmid","25100602"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/32687"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Soc Neuroscience"],["dc.relation.issn","0270-6474"],["dc.title","Dosage-Dependent Effect of Dopamine D-2 Receptor Activation on Motor Cortex Plasticity in Humans"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2011Journal Article [["dc.bibliographiccitation.firstpage","2287"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","NeuroImage"],["dc.bibliographiccitation.lastpage","2296"],["dc.bibliographiccitation.volume","54"],["dc.contributor.author","Polania, Rafael"],["dc.contributor.author","Paulus, Walter J."],["dc.contributor.author","Antal, Andrea"],["dc.contributor.author","Nitsche, Michael A."],["dc.date.accessioned","2018-11-07T08:59:55Z"],["dc.date.available","2018-11-07T08:59:55Z"],["dc.date.issued","2011"],["dc.description.abstract","Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that alters cortical excitability and activity in a polarity-dependent way. Stimulation for a few minutes has been shown to induce plastic alterations of cortical excitability and to improve cognitive performance. These effects might be related to stimulation-induced alterations of functional cortical network connectivity. We aimed to investigate the impact of tDCS on cortical network function by functional connectivity and graph theoretical analysis of the BOLD fMRI spontaneous activity. fMRI resting-state datasets were acquired immediately before and after 10-min bipolar tDCS during rest, with the anode placed over the left primary motor cortex (M1) and the cathode over the contralateral frontopolar cortex. For each dataset, grey matter voxel-based synchronization matrices were calculated and thresholded to construct undirected graphs. Nodal connectivity degree and minimum path length maps were calculated and compared before and after tDCS. Nodal minimum path lengths significantly increased in the left somatomotor (SM1) cortex after anodal tDCS, which means that the number of direct functional connections from the left SM1 to topologically distant grey matter voxels significantly decreased. In contrast, functional coupling between premotor and superior parietal areas with the left SM1 significantly increased. Additionally, the nodal connectivity degree in the left posterior cingulate cortex (PCC) area as well as in the right dorsolateral prefrontal cortex (right DLPFC) significantly increased. In summary, we provide initial support that tDCS-induced neuroplastic alterations might be related to functional connectivity changes in the human brain. Additionally, we propose our approach as a powerful method to track for neuroplastic changes in the human brain. (C) 2010 Elsevier Inc. All rights reserved."],["dc.description.sponsorship","Rose Foundation"],["dc.identifier.doi","10.1016/j.neuroimage.2010.09.085"],["dc.identifier.isi","000286302000051"],["dc.identifier.pmid","20932916"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/24019"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Academic Press Inc Elsevier Science"],["dc.relation.issn","1053-8119"],["dc.title","Introducing graph theory to track for neuroplastic alterations in the resting human brain: A transcranial direct current stimulation study"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2007Conference Abstract [["dc.bibliographiccitation.firstpage","55"],["dc.bibliographiccitation.journal","Epilepsia"],["dc.bibliographiccitation.lastpage","56"],["dc.bibliographiccitation.volume","48"],["dc.contributor.author","Klinker, Florian"],["dc.contributor.author","Hering, Diana"],["dc.contributor.author","Koch, R."],["dc.contributor.author","Nitsche, M. A."],["dc.contributor.author","Potschka, Heidrun"],["dc.contributor.author","Loscher, W."],["dc.contributor.author","Paulus, Walter J."],["dc.contributor.author","Tergau, Frithjof"],["dc.contributor.author","Liebetanz, David"],["dc.date.accessioned","2018-11-07T11:06:29Z"],["dc.date.available","2018-11-07T11:06:29Z"],["dc.date.issued","2007"],["dc.identifier.isi","000246578400172"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/52321"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Blackwell Publishing"],["dc.publisher.place","Oxford"],["dc.relation.conference","5th Joint Meeting of the German, Austrian, and Swiss Sections of the International League Against Epilepsy"],["dc.relation.eventlocation","Basle, SWITZERLAND"],["dc.relation.issn","0013-9580"],["dc.title","Anticonvulsive aftereffects of cathodal transcranial direct current stimulation (tDCS) in the rat transcranial ramp model of focal epilepsy"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details WOS2011Journal Article [["dc.bibliographiccitation.firstpage","2097"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Neuropsychopharmacology"],["dc.bibliographiccitation.lastpage","2102"],["dc.bibliographiccitation.volume","36"],["dc.contributor.author","Monte-Silva, Katia K."],["dc.contributor.author","Ruge, Diane"],["dc.contributor.author","Teo, James T."],["dc.contributor.author","Paulus, Walter J."],["dc.contributor.author","Rothwell, John C."],["dc.contributor.author","Nitsche, Michael A."],["dc.date.accessioned","2018-11-07T08:52:56Z"],["dc.date.available","2018-11-07T08:52:56Z"],["dc.date.issued","2011"],["dc.description.abstract","Dopamine (DA) is a neurotransmitter with an important influence on learning and memory, which is thought to be due to its modulatory effect on plasticity at central synapses, which in turn depends on activation of D1 and D2 receptors. Methods of brain stimulation (transcranial direct current stimulation, tDCS; paired associative stimulation, PAS) lead to after-effects on cortical excitability that are thought to resemble long-term potentization (LTP)/long-term depression (LTD) in reduced preparations. In a previous study we found that block of D2 receptors abolished plasticity induced by tDCS but had no effect on the facilitatory plasticity induced by PAS. We postulated that the different effect of D2 receptor block on tDCS-and PAS-induced plasticity may be due to the different focality and associativity of the stimulation techniques. However, alternative explanations for this difference could not be ruled out. tDCS also differs from PAS in other aspects, as tDCS induces plasticity by subthreshold neuronal activation, modulating spontaneous activity, whereas PAS induces plasticity via phasic suprathreshold stimulation. The present study in 12 volunteers examined effects of D2 receptor blockade (sulpiride (SULP) 400 mg), on the LTP/LTD-like effects of theta burst transcranial magnetic stimulation (TBS), which has less restricted effects on cortical synapses than that of PAS, and does not induce associative plasticity, similar to tDCS, but on the other hand induces cortical excitability shifts by suprathreshold (rhythmic) activation of cortical neurons similarly to PAS. Administration of SULP blocked both the excitatory and inhibitory effects of intermittent (iTBS) and continuous TBS (cTBS), respectively. As the reduced response to TBS following SULP resembles its effect on tDCS, the results support an effect of DA on plasticity, which might be related to the focality and associativity of the plasticity induced. Neuropsychopharmacology (2011) 36, 2097-2102; doi: 10.1038/npp.2011.100; published online 22 June 2011"],["dc.identifier.doi","10.1038/npp.2011.100"],["dc.identifier.isi","000293893100014"],["dc.identifier.pmid","21697824"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/22284"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Nature Publishing Group"],["dc.relation.issn","0893-133X"],["dc.title","D2 Receptor Block Abolishes Theta Burst Stimulation-Induced Neuroplasticity in the Human Motor Cortex"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2003Journal Article Discussion [["dc.bibliographiccitation.firstpage","2220"],["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","Clinical Neurophysiology"],["dc.bibliographiccitation.lastpage","2222"],["dc.bibliographiccitation.volume","114"],["dc.contributor.author","Nitsche, M. A."],["dc.contributor.author","Liebetanz, David"],["dc.contributor.author","Lang, N."],["dc.contributor.author","Antal, Andrea"],["dc.contributor.author","Tergau, Frithjof"],["dc.contributor.author","Paulus, Walter J."],["dc.date.accessioned","2018-11-07T10:34:56Z"],["dc.date.available","2018-11-07T10:34:56Z"],["dc.date.issued","2003"],["dc.identifier.doi","10.1016/S1388-2457(03)00235-9"],["dc.identifier.isi","000186563700026"],["dc.identifier.pmid","14580622"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/44984"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Elsevier Sci Ireland Ltd"],["dc.relation.issn","1388-2457"],["dc.title","Safety criteria for transcranial direct current stimulation (tDCS) in humans"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.subtype","letter_note"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2007Journal Article [["dc.bibliographiccitation.firstpage","5782"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","Investigative Ophthalmology & Visual Science"],["dc.bibliographiccitation.lastpage","5787"],["dc.bibliographiccitation.volume","48"],["dc.contributor.author","Lang, Nicolas"],["dc.contributor.author","Siebner, Hartwig Roman"],["dc.contributor.author","Chadaide, Zoltan"],["dc.contributor.author","Boros, Klara"],["dc.contributor.author","Nitsche, Michael A."],["dc.contributor.author","Rothwell, John C."],["dc.contributor.author","Paulus, Walter J."],["dc.contributor.author","Antal, Andrea"],["dc.date.accessioned","2018-11-07T10:48:26Z"],["dc.date.available","2018-11-07T10:48:26Z"],["dc.date.issued","2007"],["dc.description.abstract","PURPOSE. In the motor cortex (M1), transcranial direct current stimulation (tDCS) can effectively prime excitability changes that are evoked by a subsequent train of repetitive transcranial magnetic stimulation (rTMS). The authors examined whether tDCS can also prime the cortical response to rTMS in the human visual cortex. METHODS. In nine healthy subjects, the authors applied tDCS ( 10 minutes; +/- 1 mA) to the occipital cortex. After tDCS, they applied a 20-second train of 5 Hz rTMS at 90% of phosphene threshold ( PT) intensity. A similar rTMS protocol had previously demonstrated a strong priming effect of tDCS on rTMSinduced excitability changes in M1. PTs were determined with single-pulse TMS before and immediately after tDCS and twice after rTMS. RESULTS. Anodal tDCS led to a transient decrease in PT, and subsequent 5 Hz rTMS induced an earlier return of the PT back to baseline. Cathodal tDCS produced a short-lasting increase in PT, but 5 Hz rTMS did not influence the tDCS-induced increase in PT. In a control experiment on four subjects, a 20-second train of occipital 5 Hz rTMS left the PT unchanged, whereas a 60-second train produced a similar decrease in PT as anodal tDCS alone. CONCLUSIONS. Compared with previous work on the M1, tDCS and rTMS of the visual cortex only produce short-lasting changes in cortical excitability. Moreover, the priming effects of tDCS on subsequent rTMS conditioning are relatively modest. These discrepancies point to substantial differences in the modifiability of human motor and visual cortex."],["dc.identifier.doi","10.1167/iovs.07-0706"],["dc.identifier.isi","000251450800055"],["dc.identifier.pmid","18055832"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/48190"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Assoc Research Vision Ophthalmology Inc"],["dc.relation.issn","0146-0404"],["dc.title","Bidirectional modulation of primary visual cortex excitability: A combined tDCS and rTMS study"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2011Journal Article [["dc.bibliographiccitation.firstpage","2802"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Journal of Neurophysiology"],["dc.bibliographiccitation.lastpage","2810"],["dc.bibliographiccitation.volume","105"],["dc.contributor.author","Lang, Nicolas"],["dc.contributor.author","Nitsche, Michael A."],["dc.contributor.author","Dileone, Michele"],["dc.contributor.author","Mazzone, Paolo"],["dc.contributor.author","De Andres-Ares, Javier"],["dc.contributor.author","Diaz-Jara, Luis"],["dc.contributor.author","Paulus, Walter J."],["dc.contributor.author","Di Lazzaro, Vincenzo"],["dc.contributor.author","Oliviero, Antonio"],["dc.date.accessioned","2018-11-07T08:55:20Z"],["dc.date.available","2018-11-07T08:55:20Z"],["dc.date.issued","2011"],["dc.description.abstract","Lang N, Nitsche MA, Dileone M, Mazzone P, De Andres-Ares J, Diaz-Jara L, Paulus W, Di Lazzaro V, Oliviero A. Transcranial direct current stimulation effects on I-wave activity in humans. J Neurophysiol 105: 2802-2810, 2011. First published March 23, 2011; doi: 10.1152/jn.00617.2010.-Transcranial direct current stimulation (tDCS) of the human cerebral cortex modulates cortical excitability noninvasively in a polarity-specific manner: anodal tDCS leads to lasting facilitation and cathodal tDCS to inhibition of motor cortex excitability. To further elucidate the underlying physiological mechanisms, we recorded corticospinal volleys evoked by single-pulse transcranial magnetic stimulation of the primary motor cortex before and after a 5-min period of anodal or cathodal tDCS in eight conscious patients who had electrodes implanted in the cervical epidural space for the control of pain. The effects of anodal tDCS were evaluated in six subjects and the effects of cathodal tDCS in five subjects. Three subjects were studied with both polarities. Anodal tDCS increased the excitability of cortical circuits generating I waves in the corticospinal system, including the earliest wave (I1 wave), whereas cathodal tDCS suppressed later I waves. The motor evoked potential (MEP) amplitude changes immediately following tDCS periods were in agreement with the effects produced on intracortical circuitry. The results deliver additional evidence that tDCS changes the excitability of cortical neurons."],["dc.identifier.doi","10.1152/jn.00617.2010"],["dc.identifier.isi","000291716900017"],["dc.identifier.pmid","21430275"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/22876"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Amer Physiological Soc"],["dc.relation.issn","0022-3077"],["dc.title","Transcranial direct current stimulation effects on I-wave activity in humans"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2003Journal Article [["dc.bibliographiccitation.firstpage","1802"],["dc.bibliographiccitation.issue","13"],["dc.bibliographiccitation.journal","Neuropsychologia"],["dc.bibliographiccitation.lastpage","1807"],["dc.bibliographiccitation.volume","41"],["dc.contributor.author","Antal, Andrea"],["dc.contributor.author","Kincses, T. Z."],["dc.contributor.author","Nitsche, M. A."],["dc.contributor.author","Paulus, Walter J."],["dc.date.accessioned","2018-11-07T10:42:45Z"],["dc.date.available","2018-11-07T10:42:45Z"],["dc.date.issued","2003"],["dc.description.abstract","Small moving sensations, so-called moving phosphenes are perceived, when V5, a visual area important for visual motion analysis, is stimulated by transcranial magnetic stimulation (TMS). However, it is still a matter of debate if only V5 takes part in movement perception or other visual areas are also involved in this process. In this study we tested the involvement of V I in the perception of moving phosphenes by applying transcranial direct current stimulation (tDCS) to this area. tDCS is a non-invasive stimulation technique known to modulate cortical excitability in a polarity-specific manner. Moving and stationary phosphene thresholds (PT) were measured by TMS before, immediately after and 10, 20 and 30 min after the end of 10 min cathodal and anodal tDCS in nine healthy subjects. Reduced PTs were detected immediately and 10 min after the end of anodal tDCS while cathodal stimulation resulted in an opposite effect. Our results show that the excitability shifts induced by V I stimulation can modulate moving phosphene perception. tDCS elicits transient, but yet reversible effects, thus presenting a promising tool for neuroplasticity research. (C) 2003 Elsevier Ltd. All rights reserved."],["dc.identifier.doi","10.1016/S0028-3932(03)00181-7"],["dc.identifier.isi","000186215700009"],["dc.identifier.pmid","14527543"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/46878"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Pergamon-elsevier Science Ltd"],["dc.relation.issn","0028-3932"],["dc.title","Modulation of moving phosphene thresholds by transcranial direct current stimulation of V1 in human"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2012Conference Abstract [["dc.bibliographiccitation.firstpage","11"],["dc.bibliographiccitation.journal","Journal of Sleep Research"],["dc.bibliographiccitation.lastpage","12"],["dc.bibliographiccitation.volume","21"],["dc.contributor.author","Voss, Ursula"],["dc.contributor.author","Holzmann, Romain"],["dc.contributor.author","Nitsche, M."],["dc.contributor.author","Paulus, Walter J."],["dc.date.accessioned","2018-11-07T09:06:47Z"],["dc.date.available","2018-11-07T09:06:47Z"],["dc.date.issued","2012"],["dc.identifier.isi","000307963200025"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/25634"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.publisher.place","Hoboken"],["dc.relation.conference","21st Congress of the European-Sleep-Research-Society"],["dc.relation.eventlocation","Paris, FRANCE"],["dc.relation.issn","0962-1105"],["dc.title","Effects of transcranial alternating current stimulation (tACS) on sleep and dreaming"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details WOS