Now showing 1 - 2 of 2
  • 2009Journal Article
    [["dc.bibliographiccitation.firstpage","1237"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Trees"],["dc.bibliographiccitation.lastpage","1246"],["dc.bibliographiccitation.volume","23"],["dc.contributor.author","Surový, P."],["dc.contributor.author","Olbrich, A."],["dc.contributor.author","Polle, A."],["dc.contributor.author","Ribeiro, N. A."],["dc.contributor.author","Sloboda, B."],["dc.contributor.author","Langenfeld-Heyser, R."],["dc.date.accessioned","2017-09-07T11:49:41Z"],["dc.date.available","2017-09-07T11:49:41Z"],["dc.date.issued","2009"],["dc.description.abstract","A new method for measuring annual growth rings in cork has been developed. It is based on the fact that excitation of Quercus suber L. cork cross-sectional planes with UV light and also with blue light results in enhanced autofluorescence at the growth ring borders. This distinct autofluorescence band is located in the cork produced at the end of the vegetation period, with its smaller cells and thicker cell walls. The enhanced autofluorescence of polyphenolics mainly results from a very thick suberin layer in the walls of the small late cork cells. The gradient in autofluorescence from late cork to first early cork is steep. The best visibility of cork annual rings was found under the epifluorescence microscope in 60 μm thick microtome cork cross sections. For fast screening of high sample numbers scanning the blue-excited (473 nm) fluorescence of water wetted polished cross-sectional surfaces of cork pieces with a laser-equipped fluorescence image analyzer was most suitable. Evaluation of visibility of cork rings showed a clear improvement in comparison with reflected light image analysis; thus data obtained with this new autofluorescence scanning method are excellent for modeling the yearly growth increment of cork."],["dc.identifier.doi","10.1007/s00468-009-0363-7"],["dc.identifier.gro","3147356"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?goescholar/3955"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4962"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.relation.issn","0931-1890"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","A new method for measurement of annual growth rings in cork by means of autofluorescence"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2012Journal Article
    [["dc.bibliographiccitation.firstpage","75"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Forestry Journal"],["dc.bibliographiccitation.lastpage","91"],["dc.bibliographiccitation.volume","58"],["dc.contributor.author","Kurth, Winfried"],["dc.contributor.author","Kniemeyer, Ole"],["dc.contributor.author","Sloboda, Branislav"],["dc.date.accessioned","2019-07-10T08:14:11Z"],["dc.date.available","2019-07-10T08:14:11Z"],["dc.date.issued","2012"],["dc.description.abstract","Relational Growth Grammars are systems of rewriting rules (graph grammars) with graphical interpretation. They allow a feedback from the created virtual 3-d structures to the subsequent ruleapplication process. Using them it is possible to combine morphological (genetically fixed) growth rules with environmental impact and with functions evaluating the competitive situation of individual plants. Relational Growth Grammars are thus an ideal tool for precise specification of functional-structural models of plant growth and architecture. The dynamics of stand development in such models results from purely local rule application. Preliminary results are shown for three applications in forest-ecosystem modelling: (a) Creation of irregular stand structures, (b) simulation of competitive effects on crown radius development and resulting stand dynamics, and (c) modelling the interaction between trees and herbivores, based on the energy budgets of the individual plants and animals. The latter model includes genetical transfer and evolution of the foraging strategy of the animals. The software system GroIMP (Growth-grammar related Interactive Modelling Platform), an open source project available under www. grogra.de, was designed to interpret Relational Growth Grammars in an object-oriented framework. It also serves to visualize the resulting spatial structures. The code, executable by GroIMP, for the abovementioned models is completely documented and explained. By our examples, we hope to motivate the readers to use rule-based structural models in forest ecology."],["dc.description.abstract","Relačné rastové gramatiky sú systémy prepisovacích pravidiel (grafové gramatiky) s grafickou interpretáciou. Umožňujú spätnú väzbu z vytvorených virtuálnych 3D štruktúr do ďalšieho procesu aplikácie pravidiel. Ich použitím je možné kombinovať morfologické (geneticky viazané) rastové pravidlá s environmentálnym vplyvom a s funkciami hodnotiacimi konkurenčnú situáciu jednotlivých rastlín. Relačné rastové gramatiky sú preto ideálnym nástrojom na presnú špecifikáciu funkčno-štrukturálnych modelov rastu a architektúry rastlín. Dynamika vývoja porastu v takýchto modeloch vyplýva z čisto lokálnej aplikácie pravidiel. Predbežné výsledky sú ukázané na troch aplikáciách modelovania lesného ekosystému: (a) Tvorba nepravidelných porastových štruktúr, (b) simulácia vplyvov konkurencie na vývoj polomeru koruny a výslednú dynamiku porastu a (c) modelovanie interakcie medzi stromami a herbivormi, založené na energetických nárokoch individuálnych rastlín a živočíchov. Posledný model zahŕňa genetický prenos a evolúciu potravnej stratégie živočíchov. Softvérový systém GroIMP (Growth- grammar related Interactive Modelling Platform), open source projekt prístupný na www.grogra.de, bol navrhnutý na interpretáciu relačných rastových gramatík v objektovo orientovanom rámci. Tiež slúži na vizualizáciu výsledných priestorových štruktúr. Kód, spustiteľný v GroIMPe, je pre vyššie spomenuté modely kompletne dokumentovaný a vysvetlený. Dúfame, že uvedenými príkladmi budeme motivovať čitateľov k používaniu na pravidlách založených štrukturálnych modelov v ekológii lesa."],["dc.identifier.doi","10.2478/v10114-011-0012-0"],["dc.identifier.fs","589420"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/9919"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/61462"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation.issn","0323-1046"],["dc.relation.orgunit","Fakultät für Forstwissenschaften und Waldökologie"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject.ddc","570"],["dc.title","Forest Structure, competition and plan"],["dc.title.alternative","Herbivore ineraction modelled with relational growth grammars"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI