Now showing 1 - 3 of 3
  • 2018Journal Article
    [["dc.bibliographiccitation.firstpage","102"],["dc.bibliographiccitation.journal","International Journal of Cardiology"],["dc.bibliographiccitation.lastpage","107"],["dc.bibliographiccitation.volume","272"],["dc.contributor.author","Bergau, Leonard"],["dc.contributor.author","Willems, Rik"],["dc.contributor.author","Sprenkeler, David J."],["dc.contributor.author","Fischer, Thomas H."],["dc.contributor.author","Flevari, Panayota"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Katsaras, Dimitrios"],["dc.contributor.author","Kirova, Aleksandra"],["dc.contributor.author","Lehnart, Stephan E."],["dc.contributor.author","Lüthje, Lars"],["dc.contributor.author","Röver, Christian"],["dc.contributor.author","Seegers, Joachim"],["dc.contributor.author","Sossalla, Samuel"],["dc.contributor.author","Dunnink, Albert"],["dc.contributor.author","Sritharan, Rajevaa"],["dc.contributor.author","Tuinenburg, Anton E."],["dc.contributor.author","Vandenberk, Bert"],["dc.contributor.author","Vos, Marc A."],["dc.contributor.author","Wijers, Sofieke C."],["dc.contributor.author","Friede, Tim"],["dc.contributor.author","Zabel, Markus"],["dc.date.accessioned","2019-07-09T11:50:23Z"],["dc.date.available","2019-07-09T11:50:23Z"],["dc.date.issued","2018"],["dc.description.abstract","BACKGROUND AND OBJECTIVE: We prospectively investigated combinations of risk stratifiers including multiple EP diagnostics in a cohort study of ICD patients. METHODS: For 672 enrolled patients, we collected history, LVEF, EP study and T-wave alternans testing, 24-h Holter, NT-proBNP, and the eGFR. All-cause mortality and first appropriate ICD shock were predefined endpoints. RESULTS: The 635 patients included in the final analyses were 63 ± 13 years old, 81% were male, LVEF averaged 40 ± 14%, 20% were inducible at EP study, 63% had a primary prophylactic ICD. During follow-up over 4.3 ± 1.5 years, 108 patients died (4.0% per year), and appropriate shock therapy occurred in n = 96 (3.9% per year). In multivariate regression, age (p < 0.001), LVEF (p < 0.001), NYHA functional class (p = 0.007), eGFR (p = 0.024), a history of atrial fibrillation (p = 0.011), and NT-pro-BNP (p = 0.002) were predictors of mortality. LVEF (p = 0.002), inducibility at EP study (p = 0.007), and secondary prophylaxis (p = 0.002) were identified as independent predictors of appropriate shocks. A high annualized risk of shocks of about 10% per year was prevalent in the upper quintile of the shock score. In contrast, a low annual risk of shocks (1.8% per year) was found in the lower two quintiles of the shock score. The lower two quintiles of the mortality score featured an annual mortality <0.6%. CONCLUSIONS: In a prospective ICD patient cohort, a very good approximation of mortality versus arrhythmic risk was possible using a multivariable diagnostic strategy. EP stimulation is the best test to assess risk of arrhythmias resulting in ICD shocks."],["dc.identifier.doi","10.1016/j.ijcard.2018.06.103"],["dc.identifier.pmid","29983251"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15929"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59764"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.intern","In goescholar not merged with http://resolver.sub.uni-goettingen.de/purl?gs-1/15360 but duplicate"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/241526/EU//EUTRIGTREAT"],["dc.relation.issn","1874-1754"],["dc.rights","CC BY-NC-ND 4.0"],["dc.rights.access","openAccess"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-nd/4.0"],["dc.subject.ddc","610"],["dc.subject.mesh","Aged"],["dc.subject.mesh","Aged, 80 and over"],["dc.subject.mesh","Arrhythmias, Cardiac"],["dc.subject.mesh","Cohort Studies"],["dc.subject.mesh","Death, Sudden, Cardiac"],["dc.subject.mesh","Defibrillators"],["dc.subject.mesh","Defibrillators, Implantable"],["dc.subject.mesh","Female"],["dc.subject.mesh","Follow-Up Studies"],["dc.subject.mesh","Humans"],["dc.subject.mesh","Male"],["dc.subject.mesh","Middle Aged"],["dc.subject.mesh","Mortality"],["dc.subject.mesh","Multivariate Analysis"],["dc.subject.mesh","Natriuretic Peptide, Brain"],["dc.subject.mesh","Peptide Fragments"],["dc.subject.mesh","Prospective Studies"],["dc.subject.mesh","Risk Factors"],["dc.title","Differential multivariable risk prediction of appropriate shock versus competing mortality - A prospective cohort study to estimate benefits from ICD therapy"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2017Journal Article
    [["dc.bibliographiccitation.artnumber","e0186387"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","PloS one"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Bergau, Leonard"],["dc.contributor.author","Tichelbäcker, Tobias"],["dc.contributor.author","Kessel, Barbora"],["dc.contributor.author","Lüthje, Lars"],["dc.contributor.author","Fischer, Thomas H."],["dc.contributor.author","Friede, Tim"],["dc.contributor.author","Zabel, Markus"],["dc.date.accessioned","2019-07-09T11:44:37Z"],["dc.date.available","2019-07-09T11:44:37Z"],["dc.date.issued","2017"],["dc.description.abstract","BACKGROUND: There is evidence that the benefit of a primary prophylactic ICD therapy is not equal in all patients. PURPOSE: To evaluate risk factors of appropriate shocks and all- cause mortality in patients with a primary prophylactic ICD regarding contemporary studies. DATA SOURCE: PubMed, LIVIVO, Cochrane CENTRAL between 2010 and 2016. STUDY SELECTION: Studies were eligible if at least one of the endpoints of interest were reported. DATA EXTRACTION: All abstracts were independently reviewed by at least two authors. The full text of all selected studies was then analysed in detail. DATA SYNTHESIS: Our search strategy retrieved 608 abstracts. After exclusion of unsuitable studies, 36 papers with a total patient number of 47282 were included in our analysis. All-cause mortality was significantly associated with increasing age (HR 1.41, CI 1.29-1.53), left ventricular function (LVEF; HR 1.21, CI 1.14-1.29), ischemic cardiomyopathy (ICM; HR 1.37, CI 1.14-1.66) and co-morbidities such as impaired renal function (HR 2.30, CI 1.97-2.69). Although, younger age (HR 0.96, CI 0.85-1.09), impaired LVEF (HR 1.26, CI 0.89-1.78) and ischemic cardiomyopathy (HR 2.22, CI 0.83-5.93) were associated with a higher risk of appropriate shocks, none of these factors reached statistical significance. LIMITATIONS: Individual patient data were not available for most studies. CONCLUSION: In this meta-analysis of contemporary clinical studies, all-cause mortality is predicted by a variety of clinical characteristics including LVEF. On the other hand, the risk of appropriate shocks might be associated with impaired LVEF and ischemic cardiomyopathy. Further prospective studies are required to verify risk factors for appropriate shocks other than LVEF to help select appropriate patients for primary prophylactic ICD-therapy."],["dc.identifier.doi","10.1371/journal.pone.0186387"],["dc.identifier.pmid","29040341"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14842"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59051"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/602299/EU//EU-CERT-ICD"],["dc.relation.issn","1932-6203"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","610"],["dc.subject.mesh","Age Factors"],["dc.subject.mesh","Aged"],["dc.subject.mesh","Cardiomyopathy, Dilated"],["dc.subject.mesh","Death, Sudden, Cardiac"],["dc.subject.mesh","Defibrillators, Implantable"],["dc.subject.mesh","Female"],["dc.subject.mesh","Humans"],["dc.subject.mesh","Male"],["dc.subject.mesh","Middle Aged"],["dc.subject.mesh","Myocardial Ischemia"],["dc.subject.mesh","Primary Prevention"],["dc.subject.mesh","Prognosis"],["dc.subject.mesh","Prospective Studies"],["dc.subject.mesh","Risk Factors"],["dc.subject.mesh","Survival Analysis"],["dc.subject.mesh","Ventricular Function, Left"],["dc.title","Predictors of mortality and ICD shock therapy in primary prophylactic ICD patients-A systematic review and meta-analysis."],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2017Journal Article
    [["dc.bibliographiccitation.artnumber","e0183199"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","PloS one"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Sprenkeler, David J."],["dc.contributor.author","Tuinenburg, Anton E."],["dc.contributor.author","Ritsema van Eck, Henk J."],["dc.contributor.author","Malik, Marek"],["dc.contributor.author","Zabel, Markus"],["dc.contributor.author","Vos, Marc A."],["dc.date.accessioned","2019-07-09T11:44:49Z"],["dc.date.available","2019-07-09T11:44:49Z"],["dc.date.issued","2017"],["dc.description.abstract","OBJECTIVE: Short-term variability of the QT-interval (STV-QT) was shown to be associated with an increased risk of ventricular arrhythmias. We aimed at investigating (a) whether STV-QT exhibits circadian pattern, and (b) whether such pattern differs between patients with high and low arrhythmia risk. METHODS: As part of the ongoing EU-CERT-ICD study, 24h high resolution digital ambulatory 12-lead Holter recordings are collected prior to ICD implantation for primary prophylactic indication. Presently available patients were categorized based on their arrhythmia score (AS), a custom-made weighted score of the number of arrhythmic events on the recording. STV-QT was calculated every hour in 30 patients of which 15 and 15 patients had a high and a low AS, respectively. RESULTS: The overall dynamicity of STV-QT showed high intra- and inter-individual variability with different circadian patterns associated with low and high AS. High AS patients showed a prominent peak both at 08:00 and 18:00. At these times, STV-QT was significantly higher in the high AS patients compared to the low AS patients (1.22ms±0.55ms vs 0.60ms±0.24ms at 08:00 and 1.12ms±0.39ms vs 0.64ms±0.29ms at 18:00, both p < 0.01). CONCLUSION: In patients with high AS, STV-QT peaks in the early morning and late afternoon. This potentially reflects increased arrhythmia risk at these times. Prospective STV-QT determination at these times might thus be more sensitive to identify patients at high risk of ventricular arrhythmias."],["dc.identifier.doi","10.1371/journal.pone.0183199"],["dc.identifier.pmid","28827816"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14917"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59106"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/602299/EU//EU-CERT-ICD"],["dc.relation.issn","1932-6203"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","610"],["dc.subject.mesh","Aged"],["dc.subject.mesh","Arrhythmias, Cardiac"],["dc.subject.mesh","Circadian Rhythm"],["dc.subject.mesh","Electroencephalography"],["dc.subject.mesh","Female"],["dc.subject.mesh","Humans"],["dc.subject.mesh","Male"],["dc.subject.mesh","Middle Aged"],["dc.subject.mesh","Pilot Projects"],["dc.subject.mesh","Primary Prevention"],["dc.title","Circadian pattern of short-term variability of the QT-interval in primary prevention ICD patients - EU-CERT-ICD methodological pilot study."],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC