Now showing 1 - 10 of 170
  • 2001Conference Abstract
    [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Biophysical Journal"],["dc.bibliographiccitation.volume","80"],["dc.contributor.author","Maier, Lars. S."],["dc.contributor.author","Franz, W. M."],["dc.contributor.author","Horn, W. C."],["dc.contributor.author","Weichert, S."],["dc.contributor.author","Pieske, Burkert M."],["dc.date.accessioned","2018-11-07T09:30:12Z"],["dc.date.available","2018-11-07T09:30:12Z"],["dc.date.issued","2001"],["dc.format.extent","599A"],["dc.identifier.isi","000166692202728"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/31248"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Biophysical Society"],["dc.publisher.place","Bethesda"],["dc.relation.issn","0006-3495"],["dc.title","SERCA28-overexpression improves force-frequency and post-rest behavior due to increased SR Ca-content in transgenic rats"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details WOS
  • 2013Conference Abstract
    [["dc.bibliographiccitation.firstpage","S63"],["dc.bibliographiccitation.journal","European Journal of Heart Failure"],["dc.bibliographiccitation.lastpage","S64"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Mehel, Hind"],["dc.contributor.author","Emons, J."],["dc.contributor.author","Vettel, Christiane"],["dc.contributor.author","Lechene, Patrick"],["dc.contributor.author","Maier, Lars. S."],["dc.contributor.author","Nikolaev, V. O."],["dc.contributor.author","Vandecasteele, Gregoire"],["dc.contributor.author","Fischmeister, Rodolphe"],["dc.contributor.author","Elarmouche, A."],["dc.date.accessioned","2018-11-07T09:25:42Z"],["dc.date.available","2018-11-07T09:25:42Z"],["dc.date.issued","2013"],["dc.identifier.isi","000332489100237"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/30127"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.publisher.place","Hoboken"],["dc.title","Phoshodiesterase-2 is Upregulated in Human Failing Hearts and Blunts Beta-Adrenergic Responses in Cardiomyocytes"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]
    Details WOS
  • 2013Journal Article
    [["dc.bibliographiccitation.firstpage","2586"],["dc.bibliographiccitation.issue","13"],["dc.bibliographiccitation.journal","Molecular and Cellular Biology"],["dc.bibliographiccitation.lastpage","2602"],["dc.bibliographiccitation.volume","33"],["dc.contributor.author","Scharf, Madeleine"],["dc.contributor.author","Neef, Stefan"],["dc.contributor.author","Freund, Robert"],["dc.contributor.author","Geers-Knoerr, Cornelia"],["dc.contributor.author","Franz-Wachtel, Mirita"],["dc.contributor.author","Brandis, Almuth"],["dc.contributor.author","Krone, Dorothee"],["dc.contributor.author","Schneider, Heike"],["dc.contributor.author","Groos, Stephanie"],["dc.contributor.author","Menon, Manoj B."],["dc.contributor.author","Chang, Kin-Chow"],["dc.contributor.author","Kraft, Theresia"],["dc.contributor.author","Meissner, Joachim D."],["dc.contributor.author","Boheler, Kenneth R."],["dc.contributor.author","Maier, Lars. S."],["dc.contributor.author","Gaestel, Matthias"],["dc.contributor.author","Scheibe, Renate J."],["dc.date.accessioned","2018-11-07T09:23:26Z"],["dc.date.available","2018-11-07T09:23:26Z"],["dc.date.issued","2013"],["dc.description.abstract","The mitogen-activated protein kinase (MAPK)-activated protein kinases 2 and 3 (MK2/3) represent protein kinases downstream of the p38 MAPK. Using MK2/3 double-knockout (MK2/3(-/-)) mice, we analyzed the role of MK2/3 in cross-striated muscle by transcriptome and proteome analyses and by histology. We demonstrated enhanced expression of the slow oxidative skeletal muscle myofiber gene program, including the peroxisome proliferator-activated receptor gamma (PPAR gamma) coactivator 1 alpha (PGC-1 alpha). Using reporter gene and electrophoretic gel mobility shift assays, we demonstrated that MK2 catalytic activity directly regulated the promoters of the fast fiber-specific myosin heavy-chain IId/x and the slow fiber-specific sarco/endoplasmic reticulum Ca2+-ATPase 2 (SERCA2) gene. Elevated SERCA2a gene expression caused by a decreased ratio of transcription factor Egr-1 to Sp1 was associated with accelerated relaxation and enhanced contractility in MK2/3(-/-) cardiomyocytes, concomitant with improved force parameters in MK2/3(-/-) soleus muscle. These results link MK2/3 to the regulation of calcium dynamics and identify enzymatic activity of MK2/3 as a critical factor for modulating cross-striated muscle function by generating a unique muscle phenotype exhibiting both reduced fatigability and enhanced force in MK2/3(-/-) mice. Hence, the p38-MK2/3 axis may represent a novel target for the design of therapeutic strategies for diseases related to fiber type changes or impaired SERCA2 function."],["dc.description.sponsorship","Deutsche Forschungsgemeinschaft [SCHE 309/5-1]"],["dc.identifier.doi","10.1128/MCB.01692-12"],["dc.identifier.isi","000320030900007"],["dc.identifier.pmid","23608535"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/29577"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Amer Soc Microbiology"],["dc.relation.issn","0270-7306"],["dc.title","Mitogen-Activated Protein Kinase-Activated Protein Kinases 2 and 3 Regulate SERCA2a Expression and Fiber Type Composition To Modulate Skeletal Muscle and Cardiomyocyte"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2013Journal Article
    [["dc.bibliographiccitation.firstpage","1134"],["dc.bibliographiccitation.issue","15"],["dc.bibliographiccitation.journal","European Heart Journal"],["dc.bibliographiccitation.lastpage","+"],["dc.bibliographiccitation.volume","34"],["dc.contributor.author","Kensah, George"],["dc.contributor.author","Lara, Angelica Roa"],["dc.contributor.author","Dahlmann, Julia"],["dc.contributor.author","Zweigerdt, Robert"],["dc.contributor.author","Schwanke, Kristin"],["dc.contributor.author","Hegermann, Jan"],["dc.contributor.author","Skvorc, David"],["dc.contributor.author","Gawol, Anke"],["dc.contributor.author","Azizian, Azadeh"],["dc.contributor.author","Wagner, Stefan"],["dc.contributor.author","Maier, Lars. S."],["dc.contributor.author","Krause, Andreas"],["dc.contributor.author","Draeger, Gerald"],["dc.contributor.author","Ochs, Matthias"],["dc.contributor.author","Haverich, Axel"],["dc.contributor.author","Gruh, Ina"],["dc.contributor.author","Martin, Ulrich"],["dc.date.accessioned","2018-11-07T09:26:20Z"],["dc.date.available","2018-11-07T09:26:20Z"],["dc.date.issued","2013"],["dc.description.abstract","We explored the use of highly purified murine and human pluripotent stem cell (PSC)-derived cardiomyocytes (CMs) to generate functional bioartificial cardiac tissue (BCT) and investigated the role of fibroblasts, ascorbic acid (AA), and mechanical stimuli on tissue formation, maturation, and functionality. Murine and human embryonic/induced PSC-derived CMs were genetically enriched to generate three-dimensional CM aggregates, termed cardiac bodies (CBs). Addressing the critical limitation of major CM loss after single-cell dissociation, non-dissociated CBs were used for BCT generation, which resulted in a structurally and functionally homogenous syncytium. Continuous in situ characterization of BCTs, for 21 days, revealed that three critical factors cooperatively improve BCT formation and function: both (i) addition of fibroblasts and (ii) ascorbic acid supplementation support extracellular matrix remodelling and CB fusion, and (iii) increasing static stretch supports sarcomere alignment and CM coupling. All factors together considerably enhanced the contractility of murine and human BCTs, leading to a so far unparalleled active tension of 4.4 mN/mm(2) in human BCTs using optimized conditions. Finally, advanced protocols were implemented for the generation of human PSC-derived cardiac tissue using a defined animal-free matrix composition. BCT with contractile forces comparable with native myocardium can be generated from enriched, PSC-derived CMs, based on a novel concept of tissue formation from non-dissociated cardiac cell aggregates. In combination with the successful generation of tissue using a defined animal-free matrix, this represents a major step towards clinical applicability of stem cell-based heart tissue for myocardial repair."],["dc.identifier.doi","10.1093/eurheartj/ehs349"],["dc.identifier.isi","000318077500012"],["dc.identifier.pmid","23103664"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/30278"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Oxford Univ Press"],["dc.relation.issn","0195-668X"],["dc.title","Murine and human pluripotent stem cell-derived cardiac bodies form contractile myocardial tissue in vitro"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2018Journal Article
    [["dc.bibliographiccitation.firstpage","642"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","ESC Heart Failure"],["dc.bibliographiccitation.lastpage","648"],["dc.bibliographiccitation.volume","5"],["dc.contributor.author","Mustroph, Julian"],["dc.contributor.author","Wagemann, Olivia"],["dc.contributor.author","Lücht, Charlotte M."],["dc.contributor.author","Trum, Maximilian"],["dc.contributor.author","Hammer, Karin P."],["dc.contributor.author","Sag, Can Martin"],["dc.contributor.author","Lebek, Simon"],["dc.contributor.author","Tarnowski, Daniel"],["dc.contributor.author","Reinders, Jörg"],["dc.contributor.author","Perbellini, Filippo"],["dc.contributor.author","Terracciano, Cesare"],["dc.contributor.author","Schmid, Christof"],["dc.contributor.author","Schopka, Simon"],["dc.contributor.author","Hilker, Michael"],["dc.contributor.author","Zausig, York"],["dc.contributor.author","Pabel, Steffen"],["dc.contributor.author","Sossalla, Samuel T."],["dc.contributor.author","Schweda, Frank"],["dc.contributor.author","Maier, Lars S."],["dc.contributor.author","Wagner, Stefan"],["dc.date.accessioned","2020-12-10T14:06:09Z"],["dc.date.available","2020-12-10T14:06:09Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1002/ehf2.12336"],["dc.identifier.issn","2055-5822"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/69797"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Empagliflozin reduces Ca/calmodulin-dependent kinase II activity in isolated ventricular cardiomyocytes"],["dc.title.alternative","Empagliflozin reduces CaMKII activity"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2013Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1262"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Journal of Clinical Investigation"],["dc.bibliographiccitation.lastpage","1274"],["dc.bibliographiccitation.volume","123"],["dc.contributor.author","Luo, Min"],["dc.contributor.author","Guan, Xiaoqun"],["dc.contributor.author","Luczak, Elizabeth D."],["dc.contributor.author","Lang, Di"],["dc.contributor.author","Kutschke, William"],["dc.contributor.author","Gao, Zhan"],["dc.contributor.author","Yang, Jinying"],["dc.contributor.author","Glynn, Patric"],["dc.contributor.author","Sossalla, Samuel"],["dc.contributor.author","Swaminathan, Paari D."],["dc.contributor.author","Weiss, Robert M."],["dc.contributor.author","Yang, Baoli"],["dc.contributor.author","Rokita, Adam G."],["dc.contributor.author","Maier, Lars S."],["dc.contributor.author","Efimov, Igor R."],["dc.contributor.author","Hund, Thomas J."],["dc.contributor.author","Anderson, Mark E."],["dc.date.accessioned","2018-11-07T09:27:39Z"],["dc.date.available","2018-11-07T09:27:39Z"],["dc.date.issued","2013"],["dc.description.abstract","Diabetes increases oxidant stress and doubles the risk of dying after myocardial infarction, but the mechanisms underlying increased mortality are unknown. Mice with streptozotocin-induced diabetes developed profound heart rate slowing and doubled mortality compared with controls after myocardial infarction. Oxidized Ca2+/calmodulin-dependent protein kinase II (ox-CaMKII) was significantly increased in pacemaker tissues from diabetic patients compared with that in nondiabetic patients after myocardial infarction. Streptozotocin-treated mice had increased pacemaker cell ox-CaMKII and apoptosis, which were further enhanced by myocardial infarction. We developed a knockin mouse model of oxidation-resistant CaMKII delta (MM-VV), the isoform associated with cardiovascular disease. Streptozotocin-treated MM-VV mice and WT mice infused with MitoTEMPO, a mitochondrial targeted antioxidant, expressed significantly less ox-CaMKII, exhibited increased pacemaker cell survival, maintained normal heart rates, and were resistant to diabetes-attributable mortality after myocardial infarction. Our findings suggest that activation of a mitochondrial/ox-CaMKII pathway contributes to increased sudden death in diabetic patients after myocardial infarction."],["dc.identifier.doi","10.1172/JCI65268"],["dc.identifier.isi","000315749400036"],["dc.identifier.pmid","23426181"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/30588"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/105"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.notes.submitter","Najko"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A03: Bedeutung CaMKII-abhängiger Mechanismen für die Arrhythmogenese bei Herzinsuffizienz"],["dc.relation.issn","0021-9738"],["dc.relation.workinggroup","RG L. Maier (Experimentelle Kardiologie)"],["dc.relation.workinggroup","RG Sossalla (Kardiovaskuläre experimentelle Elektrophysiologie und Bildgebung)"],["dc.title","Diabetes increases mortality after myocardial infarction by oxidizing CaMKII"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2006Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","673"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","European Journal of Heart Failure"],["dc.bibliographiccitation.lastpage","680"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Schillinger, Wolfgang"],["dc.contributor.author","Teucher, Nils"],["dc.contributor.author","Christians, Claus"],["dc.contributor.author","Kohlhaas, Michael"],["dc.contributor.author","Sossalla, Samuel"],["dc.contributor.author","Van Nguyen, Phuc"],["dc.contributor.author","Schmidt, Albrecht G."],["dc.contributor.author","Schunck, Ortwin"],["dc.contributor.author","Nebendahl, Klaus"],["dc.contributor.author","Maier, Lars S."],["dc.contributor.author","Zeitz, Oliver"],["dc.contributor.author","HasenfuĂź, Gerd"],["dc.date.accessioned","2017-09-07T11:52:27Z"],["dc.date.available","2017-09-07T11:52:27Z"],["dc.date.issued","2006"],["dc.description.abstract","We investigated the hypothesis that increased intracellular [Na+](i) in heart failure contributes to preservation of SR Ca2+ load which may become particularly evident at slow heart rates. [Na+]i in SBFI-loaded myocytes from rabbits with pacing-induced heart failure (PHF) was significantly higher at each frequency as compared to Sham-operated animals. Furthermore, PHF rabbits demonstrated reduced SR Ca2+-ATPase protein levels (-37%, p < 0.04) but unchanged Na+/Ca2+ exchanger protein levels. At 0.25 Hz, isometric force was similar in cardiac trabeculae from PHF rabbits as compared to control (PHF, 3.6 +/- 1.3; Sham, 4.4 +/- 0.6 mN/mm(2)). Rapid cooling contractures (RCCs) were unchanged indicating preserved SR Ca2+ load at this frequency. In Sham, isometric twitch force increased with rising frequencies to 29.0 +/- 2.8 mN/mm(2) at 3.0 Hz (p < 0.05) as compared to 0.25 Hz. RCCs showed a parallel increase by 186 +/- 47% (p < 0.01). In PHF, frequency-dependent increase in force (15.8 +/- 4.7 mN/mm(2) at 3.0 Hz) and RCCs (increase by 70 +/- 40%) were significantly blunted. Thus, in PHF in rabbits SR Ca2+ load is preserved at low frequencies despite decreased SR Ca2+-ATPase expression. This may result from [Na+](i)-dependent changes in Na+/Ca2+ exchanger activity. (c) 2006 European Society of Cardiology. Published by Elsevier B.V All rights reserved."],["dc.identifier.doi","10.1016/j.ejheart.2006.01.013"],["dc.identifier.gro","3143598"],["dc.identifier.isi","000242383300002"],["dc.identifier.pmid","16540370"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1130"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Elsevier Science Bv"],["dc.relation.issn","1388-9842"],["dc.title","High intracellular Na+ preserves myocardial function at low heart rates in isolated myocardium from failing hearts"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2011Journal Article Discussion
    [["dc.bibliographiccitation.firstpage","474"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Heart Rhythm"],["dc.bibliographiccitation.lastpage","477"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Maier, Lars. S."],["dc.date.accessioned","2018-11-07T08:58:44Z"],["dc.date.available","2018-11-07T08:58:44Z"],["dc.date.issued","2011"],["dc.identifier.doi","10.1016/j.hrthm.2010.09.080"],["dc.identifier.isi","000287736200030"],["dc.identifier.pmid","20887805"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/23715"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Elsevier Science Inc"],["dc.relation.issn","1547-5271"],["dc.title","CaMKII regulation of voltage-gated sodium channels and cell excitability"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.subtype","letter_note"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2008Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","32"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Journal of Molecular and Cellular Cardiology"],["dc.bibliographiccitation.lastpage","43"],["dc.bibliographiccitation.volume","45"],["dc.contributor.author","Sossalla, Samuel"],["dc.contributor.author","Wagner, Stefan"],["dc.contributor.author","Rasenack, Eva C. L."],["dc.contributor.author","Ruff, Hanna"],["dc.contributor.author","Weber, Sarah L."],["dc.contributor.author","Schoendube, Friedrich A."],["dc.contributor.author","Tirilomis, Theodor"],["dc.contributor.author","Tenderich, Gero"],["dc.contributor.author","HasenfuĂź, Gerd"],["dc.contributor.author","Belardinelli, Luiz"],["dc.contributor.author","Maier, Lars S."],["dc.date.accessioned","2017-09-07T11:48:16Z"],["dc.date.available","2017-09-07T11:48:16Z"],["dc.date.issued","2008"],["dc.description.abstract","The goal of this study was to test the hypothesis that the novel anti-ischemic drug ratiolazine, which is known to inhibit late I-Na, could reduce intracellular [Na+](i) and diastolic [Ca2+](i) overload and improve diastolic function. Contractile dysfunction in human heart failure (HF) is associated with increased [Na+](i) and elevated diastolic [Ca2+](i). Increased Na influx through voltage-gated Na+ channels (late I-Na) has been suggested to contribute to elevated [Na+](i) in HF. In isometrically contracting ventricular muscle strips from end-stage failing human hearts, ranolazine (10 mu mol/L) did not exert negative inotropic effects on twitch force amplitude. However, ranolazine significantly reduced frequency-dependent increase in diastolic tension (i.e., diastolic dysfunction) by similar to 30% without significantly affecting sarcoplasmic reticulum (SR) Ca2+ loading. To investigate the mechanism of action of this beneficial effect of ranolazine on diastolic tension, Anemonia sulcata toxin II (ATX-II, 40 nmol/L) was used to increase intracellular Na+ loading in ventricular rabbit myocytes. ATX-II caused a significant rise in [Na+](i) typically seen in heart failure via increased late I-Na. In parallel, ATX-II significantly increased diastolic [Ca2+](i). In the presence of ranolazine the increases in late I-Na, as well as [Na+](i) and diastolic [Ca2+](i) were significantly blunted at all stimulation rates without significantly decreasing Ca2+ transient amplitudes or SR Ca2+ content. In summary, ranolazine reduced the frequency dependent increase in diastolic tension without having negative inotropic effects on contractility of muscles from end-stage failing human hearts. Moreover, in rabbit myocytes the increases in late I-Na, [Na+](i) and [Ca2+](i) caused by ATX-II, were significantly blunted by ranolazine. These results suggest that ratiolazine may be of therapeutic benefit in conditions of diastolic dysfunction due to elevated [Na+](i) and diastolic [Ca2+](i). (C) 2008 Elsevier Inc. All rights reserved."],["dc.identifier.doi","10.1016/j.yjmcc.2008.03.006"],["dc.identifier.gro","3143272"],["dc.identifier.isi","000257543800004"],["dc.identifier.pmid","18439620"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/767"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Academic Press Ltd- Elsevier Science Ltd"],["dc.relation.eissn","1095-8584"],["dc.relation.issn","0022-2828"],["dc.title","Ranolazine improves diastolic dysfunction in isolated myocardium from failing human hearts - Role of late sodium current and intracellular ion accumulation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2015Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","6965"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Sprenger, Julia U."],["dc.contributor.author","Perera, Ruwan K."],["dc.contributor.author","Steinbrecher, Julia H."],["dc.contributor.author","Lehnart, Stephan E."],["dc.contributor.author","Maier, Lars S."],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Nikolaev, Viacheslav O."],["dc.date.accessioned","2017-09-07T11:44:27Z"],["dc.date.available","2017-09-07T11:44:27Z"],["dc.date.issued","2015"],["dc.description.abstract","3',5'-cyclic adenosine monophosphate (cAMP) is an ubiquitous second messenger that regulates physiological functions by acting in distinct subcellular microdomains. Although several targeted cAMP biosensors are developed and used in single cells, it is unclear whether such biosensors can be successfully applied in vivo, especially in the context of disease. Here, we describe a transgenic mouse model expressing a targeted cAMP sensor and analyse microdomain-specific second messenger dynamics in the vicinity of the sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA). We demonstrate the bio-compatibility of this targeted sensor and its potential for real-time monitoring of compartmentalized cAMP signalling in adult cardiomyocytes isolated from a healthy mouse heart and from an in vivo cardiac disease model. In particular, we uncover the existence of a phos-phodiesterase-dependent receptor-microdomain communication, which is affected in hypertrophy, resulting in reduced beta-adrenergic receptor-cAMP signalling to SERCA."],["dc.identifier.doi","10.1038/ncomms7965"],["dc.identifier.gro","3141928"],["dc.identifier.isi","000353704700017"],["dc.identifier.pmid","25917898"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2634"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/103"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A01: cAMP- und cGMP- Mikrodomänen bei Herzhypertrophie und Insuffizienz"],["dc.relation","SFB 1002 | A09: Lokale molekulare Nanodomänen-Regulation der kardialen Ryanodin-Rezeptor-Funktion"],["dc.relation.issn","2041-1723"],["dc.relation.workinggroup","RG Hasenfuß (Transition zur Herzinsuffizienz)"],["dc.relation.workinggroup","RG L. Maier (Experimentelle Kardiologie)"],["dc.relation.workinggroup","RG Nikolaev (Cardiovascular Research Center)"],["dc.relation.workinggroup","RG Lehnart (Cellular Biophysics and Translational Cardiology Section)"],["dc.title","In vivo model with targeted cAMP biosensor reveals changes in receptor-microdomain communication in cardiac disease"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS