Options
Fischer, Niels
Loading...
Preferred name
Fischer, Niels
Official Name
Fischer, Niels
Alternative Name
Fischer, N.
Now showing 1 - 10 of 19
2013Journal Article [["dc.bibliographiccitation.firstpage","258a"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Biophysical Journal"],["dc.bibliographiccitation.volume","104"],["dc.contributor.author","Vaiana, Andrea C."],["dc.contributor.author","Bock, Lars V."],["dc.contributor.author","Blau, Christian"],["dc.contributor.author","Schroeder, Gunnar F."],["dc.contributor.author","Fischer, Niels"],["dc.contributor.author","Stark, Holger"],["dc.contributor.author","Rodnina, Marina"],["dc.contributor.author","Grubmüller, Helmut"],["dc.date.accessioned","2022-03-01T11:44:56Z"],["dc.date.available","2022-03-01T11:44:56Z"],["dc.date.issued","2013"],["dc.identifier.doi","10.1016/j.bpj.2012.11.1447"],["dc.identifier.pii","S0006349512026938"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103165"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-531"],["dc.relation.issn","0006-3495"],["dc.title","Modulation of Intersubunit Interactions during tRNA Translocation through the Ribosome"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI2021Journal Article [["dc.bibliographiccitation.artnumber","5933"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Petrychenko, Valentyn"],["dc.contributor.author","Peng, Bee-Zen"],["dc.contributor.author","de A. P. Schwarzer, Ana C."],["dc.contributor.author","Peske, Frank"],["dc.contributor.author","Rodnina, Marina V."],["dc.contributor.author","Fischer, Niels"],["dc.date.accessioned","2021-12-01T09:20:50Z"],["dc.date.available","2021-12-01T09:20:50Z"],["dc.date.issued","2021"],["dc.description.abstract","Abstract GTPases are regulators of cell signaling acting as molecular switches. The translational GTPase EF-G stands out, as it uses GTP hydrolysis to generate force and promote the movement of the ribosome along the mRNA. The key unresolved question is how GTP hydrolysis drives molecular movement. Here, we visualize the GTPase-powered step of ongoing translocation by time-resolved cryo-EM. EF-G in the active GDP–Pi form stabilizes the rotated conformation of ribosomal subunits and induces twisting of the sarcin-ricin loop of the 23 S rRNA. Refolding of the GTPase switch regions upon Pi release initiates a large-scale rigid-body rotation of EF-G pivoting around the sarcin-ricin loop that facilitates back rotation of the ribosomal subunits and forward swiveling of the head domain of the small subunit, ultimately driving tRNA forward movement. The findings demonstrate how a GTPase orchestrates spontaneous thermal fluctuations of a large RNA-protein complex into force-generating molecular movement."],["dc.description.abstract","Abstract GTPases are regulators of cell signaling acting as molecular switches. The translational GTPase EF-G stands out, as it uses GTP hydrolysis to generate force and promote the movement of the ribosome along the mRNA. The key unresolved question is how GTP hydrolysis drives molecular movement. Here, we visualize the GTPase-powered step of ongoing translocation by time-resolved cryo-EM. EF-G in the active GDP–Pi form stabilizes the rotated conformation of ribosomal subunits and induces twisting of the sarcin-ricin loop of the 23 S rRNA. Refolding of the GTPase switch regions upon Pi release initiates a large-scale rigid-body rotation of EF-G pivoting around the sarcin-ricin loop that facilitates back rotation of the ribosomal subunits and forward swiveling of the head domain of the small subunit, ultimately driving tRNA forward movement. The findings demonstrate how a GTPase orchestrates spontaneous thermal fluctuations of a large RNA-protein complex into force-generating molecular movement."],["dc.identifier.doi","10.1038/s41467-021-26133-x"],["dc.identifier.pii","26133"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/94282"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-478"],["dc.relation.eissn","2041-1723"],["dc.title","Structural mechanism of GTPase-powered ribosome-tRNA movement"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2015Conference Abstract [["dc.bibliographiccitation.journal","European Biophysics Journal"],["dc.bibliographiccitation.volume","44"],["dc.contributor.author","Fischer, N."],["dc.contributor.author","Neumann, P."],["dc.contributor.author","Bock, L."],["dc.contributor.author","Ficner, Ralf"],["dc.contributor.author","Rodnina, Marina"],["dc.contributor.author","Stark, Holger"],["dc.date.accessioned","2018-11-07T09:55:31Z"],["dc.date.available","2018-11-07T09:55:31Z"],["dc.date.issued","2015"],["dc.format.extent","S46"],["dc.identifier.isi","000380001400013"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/36763"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.publisher.place","New york"],["dc.relation.eventlocation","Dresden, GERMANY"],["dc.relation.issn","1432-1017"],["dc.relation.issn","0175-7571"],["dc.title","Breaking the 3 angstrom resolution barrier in single particle cryo-EM"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details WOS2013Journal Article [["dc.bibliographiccitation.firstpage","663a"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Biophysical Journal"],["dc.bibliographiccitation.volume","104"],["dc.contributor.author","Blau, Christian"],["dc.contributor.author","Bock, Lars V."],["dc.contributor.author","Schröder, Gunnar F."],["dc.contributor.author","Fischer, Niels"],["dc.contributor.author","Stark, Holger"],["dc.contributor.author","Rodnina, Marina V."],["dc.contributor.author","Vaiana, Andrea C."],["dc.contributor.author","Grubmüller, Helmut"],["dc.date.accessioned","2021-03-05T08:57:55Z"],["dc.date.available","2021-03-05T08:57:55Z"],["dc.date.issued","2013"],["dc.identifier.doi","10.1016/j.bpj.2012.11.3662"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/79932"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-393"],["dc.relation.issn","0006-3495"],["dc.title","Rate Estimates from Sampling Sparse Transitions: TRNA Motion Limits Transitions between Ribosomal Translocation Intermediates"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI2015Journal Article Research Paper [["dc.bibliographiccitation.artnumber","7442"],["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.lastpage","11"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Adio, Sarah"],["dc.contributor.author","Senyushkina, Tamara"],["dc.contributor.author","Peske, Frank"],["dc.contributor.author","Fischer, Niels"],["dc.contributor.author","Wintermeyer, Wolfgang"],["dc.contributor.author","Rodnina, Marina V."],["dc.date.accessioned","2017-09-07T11:44:23Z"],["dc.date.available","2017-09-07T11:44:23Z"],["dc.date.issued","2015"],["dc.description.abstract","The coupled translocation of transfer RNA and messenger RNA through the ribosome entails large-scale structural rearrangements, including step-wise movements of the tRNAs. Recent structural work has visualized intermediates of translocation induced by elongation factor G (EF-G) with tRNAs trapped in chimeric states with respect to 30S and 50S ribosomal subunits. The functional role of the chimeric states is not known. Here we follow the formation of translocation intermediates by single-molecule fluorescence resonance energy transfer. Using EF-G mutants, a non-hydrolysable GTP analogue, and fusidic acid, we interfere with either translocation or EF-G release from the ribosome and identify several rapidly interconverting chimeric tRNA states on the reaction pathway. EF-G engagement prevents backward transitions early in translocation and increases the fraction of ribosomes that rapidly fluctuate between hybrid, chimeric and posttranslocation states. Thus, the engagement of EF-G alters the energetics of translocation towards a flat energy landscape, thereby promoting forward tRNA movement."],["dc.identifier.doi","10.1038/ncomms8442"],["dc.identifier.gro","3141892"],["dc.identifier.isi","000357176700008"],["dc.identifier.pmid","26072700"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2234"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","2041-1723"],["dc.title","Fluctuations between multiple EF-G-induced chimeric tRNA states during translocation on the ribosome"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2016Journal Article Research Paper [["dc.bibliographiccitation.firstpage","80"],["dc.bibliographiccitation.issue","7631"],["dc.bibliographiccitation.journal","Nature"],["dc.bibliographiccitation.lastpage","85"],["dc.bibliographiccitation.volume","540"],["dc.contributor.author","Fischer, Niels"],["dc.contributor.author","Neumann, Piotr"],["dc.contributor.author","Bock, Lars V."],["dc.contributor.author","Maracci, Cristina"],["dc.contributor.author","Wang, Zhe"],["dc.contributor.author","Paleskava, Alena"],["dc.contributor.author","Konevega, Andrey L."],["dc.contributor.author","Schröder, Gunnar F."],["dc.contributor.author","Grubmüller, Helmut"],["dc.contributor.author","Ficner, Ralf"],["dc.contributor.author","Rodnina, Marina V."],["dc.contributor.author","Stark, Holger"],["dc.date.accessioned","2017-09-07T11:44:31Z"],["dc.date.available","2017-09-07T11:44:31Z"],["dc.date.issued","2016"],["dc.description.abstract","In all domains of life, selenocysteine (Sec) is delivered to the ribosome by selenocysteine-specific tRNA (tRNA(Sec)) with the help of a specialized translation factor, SelB in bacteria. Sec-tRNA(Sec) recodes a UGA stop codon next to a downstream mRNA stem-loop. Here we present the structures of six intermediates on the pathway of UGA recoding in Escherichia coli by single-particle cryo-electron microscopy. The structures explain the specificity of Sec-tRNA(Sec) binding by SelB and show large-scale rearrangements of Sec-tRNA(Sec). Upon initial binding of SelB-Sec-tRNA(Sec) to the ribosome and codon reading, the 30S subunit adopts an open conformation with Sec-tRNA(Sec) covering the sarcin-ricin loop (SRL) on the 50S subunit. Subsequent codon recognition results in a local closure of the decoding site, which moves Sec-tRNA(Sec) away from the SRL and triggers a global closure of the 30S subunit shoulder domain. As a consequence, SelB docks on the SRL, activating the GTPase of SelB. These results reveal how codon recognition triggers GTPase activation in translational GTPases."],["dc.identifier.doi","10.1038/nature20560"],["dc.identifier.gro","3141595"],["dc.identifier.isi","000388916600051"],["dc.identifier.pmid","27842381"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/6"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1476-4687"],["dc.relation.issn","0028-0836"],["dc.title","The pathway to GTPase activation of elongation factor SelB on the ribosome"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2005Journal Article [["dc.bibliographiccitation.firstpage","c99"],["dc.bibliographiccitation.issue","a1"],["dc.bibliographiccitation.journal","Acta Crystallographica Section A Foundations of Crystallography"],["dc.bibliographiccitation.lastpage","c99"],["dc.bibliographiccitation.volume","61"],["dc.contributor.author","Wahl, M. C."],["dc.contributor.author","Diaconu, M."],["dc.contributor.author","Kothe, U."],["dc.contributor.author","Schlünzen, F."],["dc.contributor.author","Fischer, N."],["dc.contributor.author","Harms, J."],["dc.contributor.author","Tonevitski, A. G."],["dc.contributor.author","Stark, Holger"],["dc.contributor.author","Rodnina, Marina V."],["dc.date.accessioned","2022-03-01T11:47:02Z"],["dc.date.available","2022-03-01T11:47:02Z"],["dc.date.issued","2005"],["dc.identifier.doi","10.1107/S0108767305095784"],["dc.identifier.pii","S0108767305095784"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103888"],["dc.notes.intern","DOI-Import GROB-531"],["dc.relation.issn","0108-7673"],["dc.title","Structural analysis of the L7/12 ribosomal stalk"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI2015Journal Article Research Paper [["dc.bibliographiccitation.firstpage","567"],["dc.bibliographiccitation.issue","7548"],["dc.bibliographiccitation.journal","Nature"],["dc.bibliographiccitation.lastpage","570"],["dc.bibliographiccitation.volume","520"],["dc.contributor.author","Fischer, Niels"],["dc.contributor.author","Neumann, Piotr"],["dc.contributor.author","Konevega, Andrey L."],["dc.contributor.author","Bock, Lars V."],["dc.contributor.author","Ficner, Ralf"],["dc.contributor.author","Rodnina, Marina V."],["dc.contributor.author","Stark, Holger"],["dc.date.accessioned","2017-09-07T11:44:26Z"],["dc.date.available","2017-09-07T11:44:26Z"],["dc.date.issued","2015"],["dc.description.abstract","Single particle electron cryomicroscopy (cryo-EM) has recently made significant progress in high-resolution structure determination of macromolecular complexes due to improvements in electron microscopic instrumentation and computational image analysis. However, cryo-EM structures can be highly non-uniform in local resolution\" and all structures available to date have been limited to resolutions above 3 angstrom(3,4). Here we present the cryo-EM structure of the 70S ribosome from Escherichia coli in complex with elongation factor Tu, aminoacyl-tRNA and the antibiotic kirromycin at 2.65-2.9 angstrom resolution using spherical aberration (c)-corrected cryo-EM. Overall, the cryo-EM reconstruction at 2.9 angstrom resolution is comparable to the best-resolved X-ray structure of the E. coil 70S ribosome(5) (2.8 angstrom), but provides more detailed information (2.65 angstrom) at the functionally important ribosomal core. The cryo-EM map elucidates for the first time the structure of all 35 rRNA modifications in the bacterial ribosome, explaining their roles in fine-tuning ribosome structure and function and modulating the action of antibiotics. We also obtained atomic models for flexible parts of the ribosome such as ribosomal proteins L9 and L31. The refined cryo-EM -based model presents the currently most complete high-resolution structure of the E. coil ribosome, which demonstrates the power of cryo-EM in structure determination of large and dynamic macromolecular complexes."],["dc.identifier.doi","10.1038/nature14275"],["dc.identifier.gro","3141921"],["dc.identifier.isi","000353334500049"],["dc.identifier.pmid","25707802"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2555"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1476-4687"],["dc.relation.issn","0028-0836"],["dc.title","Structure of the E. coli ribosome-EF-Tu complex at <3 Å resolution by Cs-corrected cryo-EM"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2017Journal Article [["dc.bibliographiccitation.artnumber","20160182"],["dc.bibliographiccitation.issue","1716"],["dc.bibliographiccitation.journal","Philosophical Transactions B"],["dc.bibliographiccitation.volume","372"],["dc.contributor.author","Rodnina, Marina V."],["dc.contributor.author","Fischer, Niels"],["dc.contributor.author","Maracci, Cristina"],["dc.contributor.author","Stark, Holger"],["dc.date.accessioned","2018-01-17T12:54:50Z"],["dc.date.available","2018-01-17T12:54:50Z"],["dc.date.issued","2017"],["dc.description.abstract","Elongation factors Tu (EF-Tu) and SelB are translational GTPases that deliver aminoacyl-tRNAs (aa-tRNAs) to the ribosome. In each canonical round of translation elongation, aa-tRNAs, assisted by EF-Tu, decode mRNA codons and insert the respective amino acid into the growing peptide chain. Stop codons usually lead to translation termination; however, in special cases UGA codons are recoded to selenocysteine (Sec) with the help of SelB. Recruitment of EF-Tu and SelB together with their respective aa-tRNAs to the ribosome is a multistep process. In this review, we summarize recent progress in understanding the role of ribosome dynamics in aa-tRNA selection. We describe the path to correct codon recognition by canonical elongator aa-tRNA and Sec-tRNASec and discuss the local and global rearrangements of the ribosome in response to correct and incorrect aa-tRNAs. We present the mechanisms of GTPase activation and GTP hydrolysis of EF-Tu and SelB and summarize what is known about the accommodation of aa-tRNA on the ribosome after its release from the elongation factor. We show how ribosome dynamics ensures high selectivity for the cognate aa-tRNA and suggest that conformational fluctuations, induced fit and kinetic discrimination play major roles in maintaining the speed and fidelity of translation.This article is part of the themed issue 'Perspectives on the ribosome'."],["dc.format.extent","1-10"],["dc.identifier.doi","10.1098/rstb.2016.0182"],["dc.identifier.pmid","28138068"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11694"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation.eissn","1471-2970"],["dc.subject","ribosome; tRNA; translation; decoding; recoding"],["dc.title","Ribosome dynamics during decoding"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2014Conference Abstract [["dc.contributor.author","Bock, Lars V."],["dc.contributor.author","Blau, Christian"],["dc.contributor.author","Schröder, Gunnar F."],["dc.contributor.author","Davydov, Iakov I."],["dc.contributor.author","Fischer, Niels"],["dc.contributor.author","Stark, Holger"],["dc.contributor.author","Rodnina, Marina V."],["dc.contributor.author","Vaiana, Andrea C."],["dc.contributor.author","Grubmüller, Helmut"],["dc.date.accessioned","2017-09-07T11:46:53Z"],["dc.date.available","2017-09-07T11:46:53Z"],["dc.date.issued","2014"],["dc.identifier.doi","10.1016/j.bpj.2013.11.2758"],["dc.identifier.eissn","1542-0086"],["dc.identifier.gro","3142197"],["dc.identifier.isi","000337000402731"],["dc.identifier.issn","0006-3495"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/5610"],["dc.language.iso","en"],["dc.notes","http://pubman.mpdl.mpg.de/pubman/faces/viewItemFullPage.jsp?itemId=escidoc:2049946:2"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Cell Press"],["dc.publisher.place","Cambridge"],["dc.relation.conference","58th Annual Meeting of the Biophysical-Society"],["dc.relation.eventend","2014-02-19"],["dc.relation.eventlocation","San Francisco, CA"],["dc.relation.eventstart","2014-02-15"],["dc.relation.ispartof","Biophysical Journal, 106(Supplement 1), 493a-493a."],["dc.title","Rapid and Stable Transfer RNA Translocation through the Ribosome Ensured by Specific Contact Mechanisms"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]Details DOI WOS