Options
Baum, Marcus
Loading...
Preferred name
Baum, Marcus
Official Name
Baum, Marcus
Alternative Name
Baum, M.
Main Affiliation
Now showing 1 - 3 of 3
2015Journal Article [["dc.bibliographiccitation.firstpage","2476"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","IEEE Transactions on Signal Processing"],["dc.bibliographiccitation.lastpage","2484"],["dc.bibliographiccitation.volume","63"],["dc.contributor.author","Baum, Marcus"],["dc.contributor.author","Willett, Peter"],["dc.contributor.author","Hanebeck, Uwe D."],["dc.date.accessioned","2022-06-08T08:00:26Z"],["dc.date.available","2022-06-08T08:00:26Z"],["dc.date.issued","2015"],["dc.identifier.doi","10.1109/TSP.2015.2403292"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/111075"],["dc.notes.intern","DOI-Import GROB-575"],["dc.relation.eissn","1941-0476"],["dc.relation.issn","1053-587X"],["dc.title","Polynomial-Time Algorithms for the Exact MMOSPA Estimate of a Multi-Object Probability Density Represented by Particles"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI2015Journal Article [["dc.bibliographiccitation.firstpage","1511"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","IEEE Signal Processing Letters"],["dc.bibliographiccitation.lastpage","1515"],["dc.bibliographiccitation.volume","22"],["dc.contributor.author","Baum, Marcus"],["dc.contributor.author","Willett, Peter"],["dc.contributor.author","Hanebeck, Uwe D."],["dc.date.accessioned","2022-06-08T08:00:22Z"],["dc.date.available","2022-06-08T08:00:22Z"],["dc.date.issued","2015"],["dc.identifier.doi","10.1109/LSP.2015.2410217"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/111056"],["dc.notes.intern","DOI-Import GROB-575"],["dc.relation.eissn","1558-2361"],["dc.relation.issn","1070-9908"],["dc.title","On Wasserstein Barycenters and MMOSPA Estimation"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI2016Journal Article Research Paper [["dc.bibliographiccitation.firstpage","831"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","IEEE Journal of Oceanic Engineering"],["dc.bibliographiccitation.lastpage","839"],["dc.bibliographiccitation.volume","41"],["dc.contributor.author","Li, Xiaohua"],["dc.contributor.author","Willett, Peter"],["dc.contributor.author","Baum, Marcus"],["dc.contributor.author","Li, Yaan"],["dc.date.accessioned","2022-06-08T08:00:22Z"],["dc.date.available","2022-06-08T08:00:22Z"],["dc.date.issued","2016"],["dc.description.abstract","In this work, we apply the probabilistic multihypothesis tracker (PMHT) for the problem of underwater bearing-only multisensor-multitarget tracking in clutter. The PMHT is a batch tracking algorithm that can efficiently process a large number of measurements from multiple sensors. We investigate both the extended Kalman filter (EKF) and the unscented Kalman filter (UKF) for dealing with the high degree of nonlinearity in the measurement model. Due to multiple sensors, the unobservability of single sensor bearing-only target tracking is avoided. Simulation results show that the PMHT works very well in a highly cluttered environment and its computational load is low."],["dc.identifier.doi","10.1109/JOE.2015.2506220"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/111052"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-575"],["dc.relation.eissn","1558-1691"],["dc.relation.eissn","2373-7786"],["dc.relation.issn","0364-9059"],["dc.title","PMHT Approach for Underwater Bearing-Only Multisensor–Multitarget Tracking in Clutter"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI