Options
Johnsen, Steven Arthur
Loading...
Preferred name
Johnsen, Steven Arthur
Official Name
Johnsen, Steven Arthur
Alternative Name
Johnsen, Steven
Johnsen, S. A.
Johnsen, S.
Johnsen, Steven A.
Main Affiliation
Now showing 1 - 10 of 78
2017Journal Article Research Paper [["dc.bibliographiccitation.artnumber","P4479"],["dc.bibliographiccitation.firstpage","937"],["dc.bibliographiccitation.issue","suppl_1"],["dc.bibliographiccitation.journal","European Heart Journal"],["dc.bibliographiccitation.volume","38"],["dc.contributor.author","Iyer, L. M."],["dc.contributor.author","Noack, C."],["dc.contributor.author","Nagarajan, S."],["dc.contributor.author","Woelfer, M."],["dc.contributor.author","Schoger, E."],["dc.contributor.author","Pang, S. T."],["dc.contributor.author","Kari, V."],["dc.contributor.author","Zafeiriou, M. P."],["dc.contributor.author","Toischer, K."],["dc.contributor.author","Hasenfuss, G."],["dc.contributor.author","Johnsen, S. A."],["dc.contributor.author","Zelarayan, L. C."],["dc.date.accessioned","2019-02-19T13:47:43Z"],["dc.date.available","2019-02-19T13:47:43Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1093/eurheartj/ehx504.P4479"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/57586"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/177"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | C07: Kardiomyozyten Wnt/β-catenin Komplex Aktivität im pathologischen Herz-Remodeling - als gewebespezifischer therapeutischer Ansatz"],["dc.relation.issn","0195-668X"],["dc.relation.workinggroup","RG Hasenfuß (Transition zur Herzinsuffizienz)"],["dc.relation.workinggroup","RG Toischer (Kardiales Remodeling)"],["dc.relation.workinggroup","RG Zelarayán-Behrend (Developmental Pharmacology)"],["dc.title","B-catenin/TCF7L2 signaling orchestrates initiation of pathological hypertrophic cardiac remodeling by inducing chromatin modifications"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI2020Journal Article [["dc.bibliographiccitation.firstpage","8959"],["dc.bibliographiccitation.issue","16"],["dc.bibliographiccitation.journal","Nucleic Acids Research"],["dc.bibliographiccitation.lastpage","8976"],["dc.bibliographiccitation.volume","48"],["dc.contributor.author","Wüst, Hannah M"],["dc.contributor.author","Wegener, Amélie"],["dc.contributor.author","Fröb, Franziska"],["dc.contributor.author","Hartwig, Anna C"],["dc.contributor.author","Wegwitz, Florian"],["dc.contributor.author","Kari, Vijayalakshmi"],["dc.contributor.author","Schimmel, Margit"],["dc.contributor.author","Tamm, Ernst R"],["dc.contributor.author","Johnsen, Steven A"],["dc.contributor.author","Wegner, Michael"],["dc.contributor.author","Sock, Elisabeth"],["dc.date.accessioned","2021-04-14T08:22:59Z"],["dc.date.available","2021-04-14T08:22:59Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1093/nar/gkaa606"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/80763"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation.eissn","1362-4962"],["dc.relation.issn","0305-1048"],["dc.title","Egr2-guided histone H2B monoubiquitination is required for peripheral nervous system myelination"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2011Journal Article [["dc.bibliographiccitation.firstpage","3495"],["dc.bibliographiccitation.issue","20"],["dc.bibliographiccitation.journal","Cell Cycle"],["dc.bibliographiccitation.lastpage","3504"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Kari, Vijayalakshmi"],["dc.contributor.author","Shchebet, Andrei"],["dc.contributor.author","Neumann, Heinz"],["dc.contributor.author","Johnsen, Steven A."],["dc.date.accessioned","2018-11-07T08:50:42Z"],["dc.date.available","2018-11-07T08:50:42Z"],["dc.date.issued","2011"],["dc.description.abstract","Many anticancer therapies function largely by inducing DNA double-strand breaks (DSBs) or altering the ability of cancer cells to repair them. Proper and timely DNA repair requires dynamic changes in chromatin assembly and disassembly characterized by histone H3 lysine 56 acetylation (H3K56ac) and phosphorylation of the variant histone H2AX (gamma H2AX). Similarly, histone H2B monoubiquitination (H2Bub1) functions in DNA repair, but its role in controlling dynamic changes in chromatin structure following DSBs and the histone chaperone complexes involved remain unknown. Therefore, we investigated the role of the H2B ubiquitin ligase RNF40 in the DSB response. We show that RNF40 depletion results in sustained H2AX phosphorylation and a decrease in rapid cell cycle checkpoint activation. Furthermore, RNF40 knockdown resulted in decreased H3K56ac and decreased recruitment of the facilitates chromatin transcription (FACT) complex to chromatin following DSB. Knockdown of the FACT component suppressor of Ty homolog-16 (SUPT16H) phenocopied the effects of RNF40 knockdown on both gamma H2AX and H3K56ac following DSB induction. Consistently, both RNF40 and SUPT16H were required for proper DNA end resection and timely DNA repair, suggesting that H2Bub1 and FACT cooperate to increase chromatin dynamics, which facilitates proper checkpoint activation and timely DNA repair. These results provide important mechanistic insights into the tumor suppressor function of H2Bub1 and provide a rational basis for pursuing H2Bub1-based therapies in conjunction with traditional chemo-and radiotherapy."],["dc.identifier.doi","10.4161/cc.10.20.17769"],["dc.identifier.isi","000296570700027"],["dc.identifier.pmid","22031019"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/21752"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Landes Bioscience"],["dc.relation.issn","1538-4101"],["dc.title","The H2B ubiquitin ligase RNF40 cooperates with SUPT16H to induce dynamic changes in chromatin structure during DNA double-strand break repair"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2007Journal Article [["dc.bibliographiccitation.firstpage","539"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Journal of Cellular Biochemistry"],["dc.bibliographiccitation.lastpage","548"],["dc.bibliographiccitation.volume","102"],["dc.contributor.author","Subramaniam, Malayarman"],["dc.contributor.author","Hawse, John R."],["dc.contributor.author","Johnsen, Steven A."],["dc.contributor.author","Spelsberg, Thomas C."],["dc.date.accessioned","2018-11-07T10:57:46Z"],["dc.date.available","2018-11-07T10:57:46Z"],["dc.date.issued","2007"],["dc.description.abstract","A novel TGF beta Inducible Early Gene-1 (TIEG1) was discovered in human osteoblast (OB) cells by our laboratory. Over the past decade, a handful of laboratories have revealed a Multitude of organismic, cellular, and molecular functions of this gene. TIEG1 is now classified as a member of the 3 zinc finger family of Kruppel-like transcription factors (KLF 10). Other closely related factors [TIEG2 (KLF11) and TlEG3/TlEG2b] have been reported and are briefly compared. As described in this review, TIEG1 is shown to play a role in regulating estrogen and TGF beta actions, the latter through the Smad signaling pathway. In both cases, TIEG1 acts as an inducer or repressor of gene transcription to enhance the TGF beta/Smad pathway, as well at other signaling pathways, to regulate cell proliferation, differentiation, and apoptosis. This review outlines TIEG1's molecular functions and roles in skeletal disease (osteopenia/osteoporosis), heart disease (hypertrophic cardiomyopathy), and cancer (breast and prostate)."],["dc.identifier.doi","10.1002/jcb.21492"],["dc.identifier.isi","000250100100002"],["dc.identifier.pmid","17729309"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/50330"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.relation.issn","0730-2312"],["dc.title","Role of TIEG1 in biological processes and disease states"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2007Conference Abstract [["dc.bibliographiccitation.journal","Journal of Bone and Mineral Research"],["dc.bibliographiccitation.volume","22"],["dc.contributor.author","Hawse, John R."],["dc.contributor.author","Subramaniam, Malayannan"],["dc.contributor.author","Pirngruber, Judith"],["dc.contributor.author","Rajamannan, N. M."],["dc.contributor.author","Oursler, M. J."],["dc.contributor.author","Johnsen, Steven A."],["dc.contributor.author","Sielsberg, T. C."],["dc.date.accessioned","2018-11-07T10:59:07Z"],["dc.date.available","2018-11-07T10:59:07Z"],["dc.date.issued","2007"],["dc.format.extent","S142"],["dc.identifier.isi","000250509100525"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/50622"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Amer Soc Bone & Mineral Res"],["dc.publisher.place","Washington"],["dc.relation.conference","29th Annual Meeting of the American-Society-for-Bone-and-Mineral-Research"],["dc.relation.eventlocation","Honolulu, HI"],["dc.relation.issn","0884-0431"],["dc.title","TIEG suppresses osteoblast cell proliferation through modulation of the TGF beta/Smad signaling pathway and repression of E2F1 gene expression"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details WOS2015-11-10Journal Article [["dc.bibliographiccitation.firstpage","37906"],["dc.bibliographiccitation.issue","35"],["dc.bibliographiccitation.journal","Oncotarget"],["dc.bibliographiccitation.lastpage","37918"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Kosinsky, Robyn L."],["dc.contributor.author","Wegwitz, Florian"],["dc.contributor.author","Hellbach, Nicole"],["dc.contributor.author","Dobbelstein, Matthias"],["dc.contributor.author","Mansouri, Ahmed"],["dc.contributor.author","Vogel, Tanja"],["dc.contributor.author","Begus-Nahrmann, Yvonne"],["dc.contributor.author","Johnsen, Steven A."],["dc.date.accessioned","2019-07-09T11:42:03Z"],["dc.date.available","2019-07-09T11:42:03Z"],["dc.date.issued","2015-11-10"],["dc.description.abstract","Epigenetic regulatory mechanisms play a central role in controlling gene expression during development, cell differentiation and tumorigenesis. Monoubiquitination of histone H2B is one epigenetic modification which is dynamically regulated by the opposing activities of specific ubiquitin ligases and deubiquitinating enzymes (DUBs). The Ubiquitin-specific Protease 22 (USP22) is the ubiquitin hydrolase component of the human SAGA complex which deubiquitinates histone H2B during transcription. Recently, many studies have investigated an oncogenic potential of USP22 overexpression. However, its physiological function in organ maintenance, development and its cellular function remain largely unknown. A previous study reported embryonic lethality in Usp22 knockout mice. Here we describe a mouse model with a global reduction of USP22 levels which expresses the LacZ gene under the control of the endogenous Usp22 promoter. Using this reporter we found Usp22 to be ubiquitously expressed in murine embryos. Notably, adult Usp22lacZ/lacZ displayed low residual Usp22 expression levels coupled with a reduced body size and weight. Interestingly, the reduction of Usp22 significantly influenced the frequency of differentiated cells in the small intestine and the brain while H2B and H2Bub1 levels remained constant. Taken together, we provide evidence for a physiological role for USP22 in controlling cell differentiation and lineage specification."],["dc.identifier.doi","10.18632/oncotarget.5412"],["dc.identifier.pmid","26431380"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/12736"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/58576"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","1949-2553"],["dc.rights","CC BY 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/3.0"],["dc.title","Usp22 deficiency impairs intestinal epithelial lineage specification in vivo."],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2021Journal Article [["dc.bibliographiccitation.firstpage","3145"],["dc.bibliographiccitation.issue","13"],["dc.bibliographiccitation.journal","Cancers"],["dc.bibliographiccitation.volume","13"],["dc.contributor.affiliation","Walter, Karolin; \t\t \r\n\t\t Department of Internal Medicine I, University Medical Centre Ulm, 89081 Ulm, Germany, karolin.walter@uni-ulm.de"],["dc.contributor.affiliation","Rodriguez-Aznar, Eva; \t\t \r\n\t\t Department of Internal Medicine I, University Medical Centre Ulm, 89081 Ulm, Germany, eva.rodriguez-aznar@uni-ulm.de"],["dc.contributor.affiliation","Ferreira, Monica S. Ventura; \t\t \r\n\t\t Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, University Hospital of the RWTH Aachen, 52062 Aachen, Germany, monicasvferreira@gmail.com"],["dc.contributor.affiliation","Frappart, Pierre-Olivier; \t\t \r\n\t\t Department of Internal Medicine I, University Medical Centre Ulm, 89081 Ulm, Germany, pfrappar@uni-mainz.de\t\t \r\n\t\t Institute of Toxicology, University Medical Centre of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany, pfrappar@uni-mainz.de"],["dc.contributor.affiliation","Dittrich, Tabea; \t\t \r\n\t\t Department of Internal Medicine I, University Medical Centre Ulm, 89081 Ulm, Germany, tabea.dittrich@uni-ulm.de"],["dc.contributor.affiliation","Tiwary, Kanishka; \t\t \r\n\t\t Department of Internal Medicine I, University Medical Centre Ulm, 89081 Ulm, Germany, kanishka.tiwary@uni-ulm.de"],["dc.contributor.affiliation","Meessen, Sabine; \t\t \r\n\t\t Department of Urology, Ulm University, 89081 Ulm, Germany, sabine.meessen@uni-ulm.de"],["dc.contributor.affiliation","Lerma, Laura; \t\t \r\n\t\t Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain, lerma.laura@gmail.com"],["dc.contributor.affiliation","Daiss, Nora; \t\t \r\n\t\t Department of Internal Medicine I, University Medical Centre Ulm, 89081 Ulm, Germany, nora.daiss@uniklinik-ulm.de"],["dc.contributor.affiliation","Schulte, Lucas-Alexander; \t\t \r\n\t\t Department of Internal Medicine I, University Medical Centre Ulm, 89081 Ulm, Germany, lucas-alexander.schulte@uniklinik-ulm.de"],["dc.contributor.affiliation","Najafova, Zeynab; \t\t \r\n\t\t Department of Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany, zeynab.najafova@med.uni-goettingen.de"],["dc.contributor.affiliation","Arnold, Frank; \t\t \r\n\t\t Department of Internal Medicine I, University Medical Centre Ulm, 89081 Ulm, Germany, frank.arnold@uni-ulm.de"],["dc.contributor.affiliation","Usachov, Valentyn; \t\t \r\n\t\t Department of Internal Medicine I, University Medical Centre Ulm, 89081 Ulm, Germany, usachovatn@yahoo.com"],["dc.contributor.affiliation","Azoitei, Ninel; \t\t \r\n\t\t Department of Internal Medicine I, University Medical Centre Ulm, 89081 Ulm, Germany, ninel.azoitei@uniklinik-ulm.de"],["dc.contributor.affiliation","Erkan, Mert; \t\t \r\n\t\t Department of Surgery, Koç University School of Medicine, Istanbul 34450, Turkey, merkan@ku.edu.tr\t\t \r\n\t\t Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey, merkan@ku.edu.tr"],["dc.contributor.affiliation","Lechel, Andre; \t\t \r\n\t\t Department of Internal Medicine I, University Medical Centre Ulm, 89081 Ulm, Germany, andre.lechel@uniklinik-ulm.de"],["dc.contributor.affiliation","Brümmendorf, Tim H.; \t\t \r\n\t\t Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, University Hospital of the RWTH Aachen, 52062 Aachen, Germany, tbruemmendorf@ukaachen.de"],["dc.contributor.affiliation","Seufferlein, Thomas; \t\t \r\n\t\t Department of Internal Medicine I, University Medical Centre Ulm, 89081 Ulm, Germany, thomas.seufferlein@uni-ulm.de"],["dc.contributor.affiliation","Kleger, Alexander; \t\t \r\n\t\t Department of Internal Medicine I, University Medical Centre Ulm, 89081 Ulm, Germany, alexander.kleger@uni-ulm.de"],["dc.contributor.affiliation","Tabarés, Enrique; \t\t \r\n\t\t Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain, enrique.tabares@uam.es"],["dc.contributor.affiliation","Günes, Cagatay; \t\t \r\n\t\t Department of Urology, Ulm University, 89081 Ulm, Germany, cagatay.guenes@uniklinik-ulm.de"],["dc.contributor.affiliation","Johnsen, Steven A.; \t\t \r\n\t\t Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Gastroenterology Research, Mayo Clinic, Rochester, MN 55905, USA, Johnsen.Steven@mayo.edu"],["dc.contributor.affiliation","Beier, Fabian; \t\t \r\n\t\t Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, University Hospital of the RWTH Aachen, 52062 Aachen, Germany, fbeier@ukaachen.de"],["dc.contributor.affiliation","Sainz, Bruno; \t\t \r\n\t\t Department of Biochemistry, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain, bsainz@iib.uam.es\t\t \r\n\t\t Department of Cancer Biology, Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), CSIC-UAM, 28049 Madrid, Spain, bsainz@iib.uam.es\t\t \r\n\t\t Chronic Diseases and Cancer, Area 3—Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28049 Madrid, Spain, bsainz@iib.uam.es"],["dc.contributor.affiliation","Hermann, Patrick C.; \t\t \r\n\t\t Department of Internal Medicine I, University Medical Centre Ulm, 89081 Ulm, Germany, patrick.hermann@uni-ulm.de"],["dc.contributor.author","Walter, Karolin"],["dc.contributor.author","Rodriguez-Aznar, Eva"],["dc.contributor.author","Ferreira, Monica S. Ventura"],["dc.contributor.author","Frappart, Pierre-Olivier"],["dc.contributor.author","Dittrich, Tabea"],["dc.contributor.author","Tiwary, Kanishka"],["dc.contributor.author","Meessen, Sabine"],["dc.contributor.author","Lerma, Laura"],["dc.contributor.author","Daiss, Nora"],["dc.contributor.author","Hermann, Patrick C."],["dc.contributor.author","Najafova, Zeynab"],["dc.contributor.author","Johnsen, Steven A."],["dc.contributor.author","Schulte, Lucas-Alexander"],["dc.contributor.author","Arnold, Frank"],["dc.contributor.author","Usachov, Valentyn"],["dc.contributor.author","Azoitei, Ninel"],["dc.contributor.author","Erkan, Mert"],["dc.contributor.author","Lechel, Andre"],["dc.contributor.author","Brümmendorf, Tim H."],["dc.contributor.author","Seufferlein, Thomas"],["dc.contributor.author","Kleger, Alexander"],["dc.contributor.author","Tabarés, Enrique"],["dc.contributor.author","Günes, Cagatay"],["dc.contributor.author","Beier, Fabian"],["dc.contributor.author","Sainz, Bruno"],["dc.date.accessioned","2021-08-12T07:45:52Z"],["dc.date.available","2021-08-12T07:45:52Z"],["dc.date.issued","2021"],["dc.date.updated","2022-02-09T13:20:51Z"],["dc.description.abstract","To assess the role of telomerase activity and telomere length in pancreatic CSCs we used different CSC enrichment methods (CD133, ALDH, sphere formation) in primary patient-derived pancreatic cancer cells. We show that CSCs have higher telomerase activity and longer telomeres than bulk tumor cells. Inhibition of telomerase activity, using genetic knockdown or pharmacological inhibitor (BIBR1532), resulted in CSC marker depletion, abrogation of sphere formation in vitro and reduced tumorigenicity in vivo. Furthermore, we identify a positive feedback loop between stemness factors (NANOG, OCT3/4, SOX2, KLF4) and telomerase, which is essential for the self-renewal of CSCs. Disruption of the balance between telomerase activity and stemness factors eliminates CSCs via induction of DNA damage and apoptosis in primary patient-derived pancreatic cancer samples, opening future perspectives to avoid CSC-driven tumor relapse. In the present study, we demonstrate that telomerase regulation is critical for the “stemness” maintenance in pancreatic CSCs and examine the effects of telomerase inhibition as a potential treatment option of pancreatic cancer. This may significantly promote our understanding of PDAC tumor biology and may result in improved treatment for pancreatic cancer patients."],["dc.description.abstract","To assess the role of telomerase activity and telomere length in pancreatic CSCs we used different CSC enrichment methods (CD133, ALDH, sphere formation) in primary patient-derived pancreatic cancer cells. We show that CSCs have higher telomerase activity and longer telomeres than bulk tumor cells. Inhibition of telomerase activity, using genetic knockdown or pharmacological inhibitor (BIBR1532), resulted in CSC marker depletion, abrogation of sphere formation in vitro and reduced tumorigenicity in vivo. Furthermore, we identify a positive feedback loop between stemness factors (NANOG, OCT3/4, SOX2, KLF4) and telomerase, which is essential for the self-renewal of CSCs. Disruption of the balance between telomerase activity and stemness factors eliminates CSCs via induction of DNA damage and apoptosis in primary patient-derived pancreatic cancer samples, opening future perspectives to avoid CSC-driven tumor relapse. In the present study, we demonstrate that telomerase regulation is critical for the “stemness” maintenance in pancreatic CSCs and examine the effects of telomerase inhibition as a potential treatment option of pancreatic cancer. This may significantly promote our understanding of PDAC tumor biology and may result in improved treatment for pancreatic cancer patients."],["dc.description.sponsorship","Deutsche Krebshilfe"],["dc.description.sponsorship","Deutsche Forschungsgemeinschaft"],["dc.description.sponsorship","Medizinische Fakultät, Universität Ulm"],["dc.description.sponsorship","Hector Foundation"],["dc.identifier.doi","10.3390/cancers13133145"],["dc.identifier.eissn","2072-6694"],["dc.identifier.pii","cancers13133145"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/88563"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-448"],["dc.publisher","MDPI"],["dc.relation.eissn","2072-6694"],["dc.rights","https://creativecommons.org/licenses/by/4.0/"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0/"],["dc.title","Telomerase and Pluripotency Factors Jointly Regulate Stemness in Pancreatic Cancer Stem Cells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2016Journal Article [["dc.bibliographiccitation.firstpage","1609"],["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","EMBO Reports"],["dc.bibliographiccitation.lastpage","1623"],["dc.bibliographiccitation.volume","17"],["dc.contributor.author","Kari, Vijayalakshmi"],["dc.contributor.author","Mansour, Wael Yassin"],["dc.contributor.author","Raul, Sanjay Kumar"],["dc.contributor.author","Baumgart, Simon J."],["dc.contributor.author","Mund, Andreas"],["dc.contributor.author","Grade, Marian"],["dc.contributor.author","Sirma, Hueseyin"],["dc.contributor.author","Simon, Ronald"],["dc.contributor.author","Will, Hans"],["dc.contributor.author","Dobbelstein, Matthias"],["dc.contributor.author","Dikomey, Ekkehard"],["dc.contributor.author","Johnsen, Steven A."],["dc.date.accessioned","2018-11-07T10:06:25Z"],["dc.date.available","2018-11-07T10:06:25Z"],["dc.date.issued","2016"],["dc.description.abstract","The CHD1 gene, encoding the chromo-domain helicase DNA-binding protein-1, is one of the most frequently deleted genes in prostate cancer. Here, we examined the role of CHD1 in DNA double-strand break (DSB) repair in prostate cancer cells. We show that CHD1 is required for the recruitment of CtIP to chromatin and subsequent end resection during DNA DSB repair. Our data support a role for CHD1 in opening the chromatin around the DSB to facilitate the recruitment of homologous recombination (HR) proteins. Consequently, depletion of CHD1 specifically affects HR-mediated DNA repair but not non-homologous end joining. Together, we provide evidence for a previously unknown role of CHD1 in DNA DSB repair via HR and show that CHD1 depletion sensitizes cells to PARP inhibitors, which has potential therapeutic relevance. Our findings suggest that CHD1 deletion, like BRCA1/2 mutation in ovarian cancer, may serve as a marker for prostate cancer patient stratification and the utilization of targeted therapies such as PARP inhibitors, which specifically target tumors with HR defects."],["dc.identifier.doi","10.15252/embr.201642352"],["dc.identifier.isi","000387148700012"],["dc.identifier.pmid","27596623"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/39090"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.relation.issn","1469-3178"],["dc.relation.issn","1469-221X"],["dc.title","Loss of CHD1 causes DNA repair defects and enhances prostate cancer therapeutic responsiveness"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2019Journal Article [["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Acta Physiologica"],["dc.bibliographiccitation.volume","228"],["dc.contributor.author","Kammoun, Malek"],["dc.contributor.author","Piquereau, Jerome"],["dc.contributor.author","Nadal‐Desbarats, Lydie"],["dc.contributor.author","Même, Sandra"],["dc.contributor.author","Beuvin, Maud"],["dc.contributor.author","Bonne, Gisèle"],["dc.contributor.author","Veksler, Vladimir"],["dc.contributor.author","Le Fur, Yann"],["dc.contributor.author","Pouletaut, Philippe"],["dc.contributor.author","Même, William"],["dc.contributor.author","Szeremeta, Frederic"],["dc.contributor.author","Constans, Jean‐Marc"],["dc.contributor.author","Bruinsma, Elizabeth S."],["dc.contributor.author","Nelson Holte, Molly H."],["dc.contributor.author","Najafova, Zeynab"],["dc.contributor.author","Johnsen, Steven A."],["dc.contributor.author","Subramaniam, Malayannan"],["dc.contributor.author","Hawse, John R."],["dc.contributor.author","Bensamoun, Sabine F."],["dc.date.accessioned","2020-12-10T18:26:53Z"],["dc.date.available","2020-12-10T18:26:53Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1111/apha.v228.3"],["dc.identifier.eissn","1748-1716"],["dc.identifier.issn","1748-1708"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/76199"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Novel role of Tieg1 in muscle metabolism and mitochondrial oxidative capacities"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2016Journal Article [["dc.bibliographiccitation.firstpage","113"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Klinische Pädiatrie"],["dc.bibliographiccitation.lastpage","117"],["dc.bibliographiccitation.volume","228"],["dc.contributor.author","Wiese, M."],["dc.contributor.author","Schill, Fabian"],["dc.contributor.author","Sturm, Dominik"],["dc.contributor.author","Pfister, Stefan M."],["dc.contributor.author","Hulleman, Esther"],["dc.contributor.author","Johnsen, Steven A."],["dc.contributor.author","Kramm, Christof M."],["dc.date.accessioned","2018-11-07T10:14:53Z"],["dc.date.available","2018-11-07T10:14:53Z"],["dc.date.issued","2016"],["dc.description.abstract","Background: Glioblastoma multiforme (GBM) and diffuse intrinsic pontine glioma (DIPG) belong to the most aggressive cancers in children with poor prognosis and limited therapeutic options. Therapeutic targeting of epigenetic proteins may offer new treatment options. Preclinical studies identified Enhancer of Zeste Homolog 2 (EZH2) within polycomb repressor complex 2 (PRC2) as a potential epigenetic anti-tumor target in adult GBM cells but similar inhibition studies in pediatric GBM/DIPG were still missing. Moreover, approximately 30 % of pediatric high grade gliomas (pedHGG) including GBM and DIPG harbor a lysine 27 mutation (K27M) in histone 3.3 (H3.3) which is correlated with poor outcome and was shown to influence EZH2 function. Patients, materials and methods: The present study investigated the correlation of expression of EZH2 and other PRC2 genes (EZH1, SUZ12, EED) with overall survival of pediatric GBM patients and the cytotoxic impact of EZH2 inhibition by the novel agent Tazemetostat in pediatric GBM/DIPG cells harboring either a H3.3 mutation or a H3 wildtype. Results: EZH2 gene expression does not correlate with survival of pedHGG patients, and EZH2 inhibition does not induce significant cytotoxicity in pedHGG cells independently of H3.3 mutations. Discussion and conclusion: We suggest that EZH2 inhibition might not offer an effective single agent treatment option for paedHGG patients. However, the therapeutic efficacy in combination with cytotoxic and/or other epigenetically active agents still has to be elucidated."],["dc.description.sponsorship","Menschen fur Kinder e.V."],["dc.identifier.doi","10.1055/s-0042-105292"],["dc.identifier.isi","000375862800003"],["dc.identifier.pmid","27135271"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/40710"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Georg Thieme Verlag Kg"],["dc.relation.issn","1439-3824"],["dc.relation.issn","0300-8630"],["dc.title","No Significant Cytotoxic Effect of the EZH2 Inhibitor Tazemetostat (EPZ-6438) on Pediatric Glioma Cells with Wildtype Histone 3 or Mutated Histone 3.3"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS