Now showing 1 - 5 of 5
  • 2015Conference Abstract
    [["dc.bibliographiccitation.firstpage","37"],["dc.bibliographiccitation.journal","Acta Physiologica"],["dc.bibliographiccitation.lastpage","38"],["dc.bibliographiccitation.volume","215"],["dc.contributor.author","Yavuz, Utku Suekrue"],["dc.contributor.author","Negro, Francesco"],["dc.contributor.author","Sebik, Oguz"],["dc.contributor.author","Holobar, Ales"],["dc.contributor.author","Froemmel, Cornelius"],["dc.contributor.author","Turker, Kemal S."],["dc.contributor.author","Farina, Dario"],["dc.date.accessioned","2018-11-07T09:49:23Z"],["dc.date.available","2018-11-07T09:49:23Z"],["dc.date.issued","2015"],["dc.identifier.isi","000364786400081"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/35500"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.publisher.place","Hoboken"],["dc.relation.issn","1748-1716"],["dc.relation.issn","1748-1708"],["dc.title","The new technique for accurate estimation of the spinal cord circuitry: recording reflex responses of large motor unit populations"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details WOS
  • 2015Journal Article
    [["dc.bibliographiccitation.firstpage","4305"],["dc.bibliographiccitation.issue","19"],["dc.bibliographiccitation.journal","The Journal of Physiology"],["dc.bibliographiccitation.lastpage","4318"],["dc.bibliographiccitation.volume","593"],["dc.contributor.author","Yavuz, Utku Suekrue"],["dc.contributor.author","Negro, Francesco"],["dc.contributor.author","Sebik, Oguz"],["dc.contributor.author","Holobar, Ales"],["dc.contributor.author","Froemmel, Cornelius"],["dc.contributor.author","Turker, Kemal S."],["dc.contributor.author","Farina, Dario"],["dc.date.accessioned","2018-11-07T09:50:51Z"],["dc.date.available","2018-11-07T09:50:51Z"],["dc.date.issued","2015"],["dc.description.abstract","We propose and validate a non-invasive method that enables accurate detection of the discharge times of a relatively large number of motor units during excitatory and inhibitory reflex stimulations. High-density surface electromyography (HDsEMG) and intramuscular EMG (iEMG) were recorded from the tibialis anterior muscle during ankle dorsiflexions performed at 5%, 10% and 20% of the maximum voluntary contraction (MVC) force, in nine healthy subjects. The tibial nerve (inhibitory reflex) and the peroneal nerve (excitatory reflex) were stimulated with constant current stimuli. In total, 416 motor units were identified from the automatic decomposition of the HDsEMG. The iEMG was decomposed using a state-of-the-art decomposition tool and provided 84 motor units (average of two recording sites). The reflex responses of the detected motor units were analysed using the peri-stimulus time histogram (PSTH) and the peri-stimulus frequencygram (PSF). The reflex responses of the common motor units identified concurrently from the HDsEMG and the iEMG signals showed an average disagreement (the difference between number of observed spikes in each bin relative to the mean) of 8.2 +/- 2.2% (5% MVC), 6.8 +/- 1.0% (10% MVC) and 7.5 +/- 2.2% (20% MVC), for reflex inhibition, and 6.5 +/- 4.1%, 12.0 +/- 1.8% and 13.9 +/- 2.4%, for reflex excitation. There was no significant difference between the characteristics of the reflex responses, such as latency, amplitude and duration, for the motor units identified by both techniques. Finally, reflex responses could be identified at higher force (4 of the 9 subjects performed contraction up to 50% MVC) using HDsEMG but not iEMG, because of the difficulty in decomposing the iEMG at high forces. In conclusion, single motor unit reflex responses can be estimated accurately and non-invasively in relatively large populations of motor units using HDsEMG. This non-invasive approach may enable a more thorough investigation of the synaptic input distribution on active motor units at various force levels."],["dc.description.sponsorship","European Research Council (ERC) [267888]"],["dc.identifier.doi","10.1113/JP270635"],["dc.identifier.isi","000363090500002"],["dc.identifier.pmid","26115007"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/35792"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.relation.issn","1469-7793"],["dc.relation.issn","0022-3751"],["dc.title","Estimating reflex responses in large populations of motor units by decomposition of the high-density surface electromyogram"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2014Journal Article
    [["dc.bibliographiccitation.firstpage","602"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Journal of Neurophysiology"],["dc.bibliographiccitation.lastpage","612"],["dc.bibliographiccitation.volume","111"],["dc.contributor.author","Yavuz, S. Utku"],["dc.contributor.author","Mrachacz-Kersting, Natalie"],["dc.contributor.author","Sebik, Oguz"],["dc.contributor.author","Unver, M. Berna"],["dc.contributor.author","Farina, Dario"],["dc.contributor.author","Turker, Kemal S."],["dc.date.accessioned","2018-11-07T09:44:24Z"],["dc.date.available","2018-11-07T09:44:24Z"],["dc.date.issued","2014"],["dc.description.abstract","Reflex responses of tibialis anterior motor units to stretch stimuli were investigated in human subjects. Three types of stretch stimuli were applied (tap-like, ramp-and-hold, and half-sine stretch). Stimulus-induced responses in single motor units were analyzed using the classical technique, which involved building average surface electromyogram (SEMG) and peristimulus time histograms (PSTH) from the discharge times of motor units and peristimulus frequencygrams (PSF) from the instantaneous discharge rates of single motor units. With the use of SEMG and PSTH, the tap-like stretch stimulus induced five separate reflex responses, on average. With the same single motor unit data, the PSF technique indicated that the tap stimulus induced only three reflex responses. Similar to the finding using the tap-like stretch stimuli, ramp-and-hold stimuli induced several peaks and troughs in the SEMG and PSTH. The PSF analyses displayed genuine increases in discharge rates underlying the peaks but not underlying the troughs. Half-sine stretch stimuli induced a long-lasting excitation followed by a long-lasting silent period in SEMG and PSTH. The increase in the discharge rate, however, lasted for the entire duration of the stimulus and continued during the silent period. The results are discussed in the light of the fact that the discharge rate of a motoneuron has a strong positive linear association with the effective synaptic current it receives and hence represents changes in the membrane potential more directly and accurately than the other indirect measures. This study suggests that the neuronal pathway of the human stretch reflex does not include inhibitory pathways."],["dc.identifier.doi","10.1152/jn.00295.2013"],["dc.identifier.isi","000331215500015"],["dc.identifier.pmid","24225537"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/34386"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Amer Physiological Soc"],["dc.relation.issn","1522-1598"],["dc.relation.issn","0022-3077"],["dc.title","Human stretch reflex pathways reexamined"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2015Conference Abstract
    [["dc.bibliographiccitation.firstpage","36"],["dc.bibliographiccitation.journal","Acta Physiologica"],["dc.bibliographiccitation.lastpage","37"],["dc.bibliographiccitation.volume","215"],["dc.contributor.author","Tuerker, Kemal S."],["dc.contributor.author","Sebik, Oguz"],["dc.contributor.author","Yilmaz, Gizem"],["dc.contributor.author","Yavuz, Utku"],["dc.contributor.author","Ugincius, Paulius"],["dc.date.accessioned","2018-11-07T09:49:23Z"],["dc.date.available","2018-11-07T09:49:23Z"],["dc.date.issued","2015"],["dc.identifier.isi","000364786400079"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/35499"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.publisher.place","Hoboken"],["dc.relation.issn","1748-1716"],["dc.relation.issn","1748-1708"],["dc.title","Discharge rate method for error free estimation of the synaptic potentials in human motor neurons"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details WOS
  • 2015Conference Abstract
    [["dc.bibliographiccitation.journal","Acta Physiologica"],["dc.bibliographiccitation.volume","215"],["dc.contributor.author","Yavuz, Utku Suekrue"],["dc.contributor.author","Negro, Francesco"],["dc.contributor.author","Sebik, Oguz"],["dc.contributor.author","Froemmel, Cornelius"],["dc.contributor.author","Farina, Dario"],["dc.contributor.author","Turker, Kemal S."],["dc.date.accessioned","2018-11-07T09:49:23Z"],["dc.date.available","2018-11-07T09:49:23Z"],["dc.date.issued","2015"],["dc.format.extent","37"],["dc.identifier.isi","000364786400080"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/35501"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.publisher.place","Hoboken"],["dc.relation.issn","1748-1716"],["dc.relation.issn","1748-1708"],["dc.title","Discharge rate and synaptic noise affect reflex response regime of motor unit population"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details WOS