Options
Schwappach-Pignataro, Blanche
Loading...
Preferred name
Schwappach-Pignataro, Blanche
Official Name
Schwappach-Pignataro, Blanche
Alternative Name
Schwappach-Pignataro, B.
Schwappach, Blanche
Schwappach, B.
Schwappach-Pignataro, Blanche
Main Affiliation
Now showing 1 - 6 of 6
2018Journal Article Research Paper [["dc.bibliographiccitation.firstpage","jcs211110"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Journal of Cell Science"],["dc.bibliographiccitation.volume","131"],["dc.contributor.author","Vitali, Daniela G."],["dc.contributor.author","Sinzel, Monika"],["dc.contributor.author","Bulthuis, Elianne P."],["dc.contributor.author","Kolb, Antonia"],["dc.contributor.author","Zabel, Susanne"],["dc.contributor.author","Mehlhorn, Dietmar G."],["dc.contributor.author","Figueiredo Costa, Bruna"],["dc.contributor.author","Farkas, Ákos"],["dc.contributor.author","Clancy, Anne"],["dc.contributor.author","Schuldiner, Maya"],["dc.contributor.author","Grefen, Christopher"],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","Borgese, Nica"],["dc.contributor.author","Rapaport, Doron"],["dc.date.accessioned","2020-12-10T18:41:52Z"],["dc.date.available","2020-12-10T18:41:52Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1242/jcs.211110"],["dc.identifier.pmid","29661846"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/77708"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/60"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P04: Der GET-Rezeptor als ein Eingangstor zum ER und sein Zusammenspiel mit GET bodies"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.title","The GET pathway can increase the risk of mitochondrial outer membrane proteins to be mistargeted to the ER"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2016Journal Article Research Paper [["dc.bibliographiccitation.artnumber","39464"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Scientific Reports"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Rivera-Monroy, Jhon"],["dc.contributor.author","Musiol, Lena"],["dc.contributor.author","Unthan-Fechner, Kirsten"],["dc.contributor.author","Farkas, Ákos"],["dc.contributor.author","Clancy, Anne"],["dc.contributor.author","Coy-Vergara, Javier"],["dc.contributor.author","Weill, Uri"],["dc.contributor.author","Gockel, Sarah"],["dc.contributor.author","Lin, Shuh-Yow"],["dc.contributor.author","Corey, David P."],["dc.contributor.author","Kohl, Tobias"],["dc.contributor.author","Ströbel, Philipp"],["dc.contributor.author","Schuldiner, Maya"],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","Vilardi, Fabio"],["dc.date.accessioned","2018-04-23T11:49:05Z"],["dc.date.available","2018-04-23T11:49:05Z"],["dc.date.issued","2016"],["dc.description.abstract","Tail-anchored (TA) proteins are post-translationally inserted into membranes. The TRC40 pathway targets TA proteins to the endoplasmic reticulum via a receptor comprised of WRB and CAML. TRC40 pathway clients have been identified using in vitro assays, however, the relevance of the TRC40 pathway in vivo remains unknown. We followed the fate of TA proteins in two tissue-specific WRB knockout mouse models and found that their dependence on the TRC40 pathway in vitro did not predict their reaction to receptor depletion in vivo. The SNARE syntaxin 5 (Stx5) was extremely sensitive to disruption of the TRC40 pathway. Screening yeast TA proteins with mammalian homologues, we show that the particular sensitivity of Stx5 is conserved, possibly due to aggregation propensity of its cytoplasmic domain. We establish that Stx5 is an autophagy target that is inefficiently membrane-targeted by alternative pathways. Our results highlight an intimate relationship between the TRC40 pathway and cellular proteostasis."],["dc.identifier.doi","10.1038/srep39464"],["dc.identifier.gro","3142486"],["dc.identifier.pmid","28000760"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14116"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13638"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/187"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/8"],["dc.language.iso","en"],["dc.notes.intern","lifescience updates Crossref Import"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A06: Molekulare Grundlagen mitochondrialer Kardiomyopathien"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P04: Der GET-Rezeptor als ein Eingangstor zum ER und sein Zusammenspiel mit GET bodies"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.issn","2045-2322"],["dc.relation.workinggroup","RG Lehnart (Cellular Biophysics and Translational Cardiology Section)"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Mice lacking WRB reveal differential biogenesis requirements of tail-anchored proteins in vivo"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2022Journal Article [["dc.bibliographiccitation.journal","Molecular Cell"],["dc.contributor.author","Ulrich, Kathrin"],["dc.contributor.author","Farkas, Ákos"],["dc.contributor.author","Chan, Olivia"],["dc.contributor.author","Katamanin, Olivia"],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","Jakob, Ursula"],["dc.date.accessioned","2022-09-01T09:49:44Z"],["dc.date.available","2022-09-01T09:49:44Z"],["dc.date.issued","2022"],["dc.description.sponsorship"," http://dx.doi.org/10.13039/501100001659 Deutsche Forschungsgemeinschaft"],["dc.description.sponsorship"," http://dx.doi.org/10.13039/100000002 National Institutes of Health"],["dc.identifier.doi","10.1016/j.molcel.2022.06.015"],["dc.identifier.pii","S1097276522005986"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/113516"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-597"],["dc.relation.issn","1097-2765"],["dc.rights.uri","https://www.elsevier.com/tdm/userlicense/1.0/"],["dc.title","From guide to guard—activation mechanism of the stress-sensing chaperone Get3"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2019Journal Article Overview [["dc.bibliographiccitation.firstpage","311"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Traffic"],["dc.bibliographiccitation.lastpage","324"],["dc.bibliographiccitation.volume","20"],["dc.contributor.author","Farkas, Ákos"],["dc.contributor.author","De Laurentiis, Evelina Ines"],["dc.contributor.author","Schwappach, Blanche"],["dc.date.accessioned","2019-07-09T11:51:36Z"],["dc.date.available","2019-07-09T11:51:36Z"],["dc.date.issued","2019"],["dc.description.abstract","Get3 in yeast or TRC40 in mammals is an ATPase that, in eukaryotes, is a central element of the GET or TRC pathway involved in the targeting of tail-anchored proteins. Get3 has also been shown to possess chaperone holdase activity. A bioinformatic assessment was performed across all domains of life on functionally important regions of Get3 including the TRC40-insert and the hydrophobic groove essential for tailanchored protein binding. We find that such a hydrophobic groove is much more common in bacterial Get3 homologs than previously appreciated based on a directed comparison of bacterial ArsA and yeast Get3. Furthermore, our analysis shows that the region containing the TRC40-insert varies in length and methionine content to an unexpected extent within eukaryotes and also between different phylogenetic groups. In fact, since the TRC40-insert is present in all domains of life, we suggest that its presence does not automatically predict a tail-anchored protein targeting function. This opens up a new perspective on the function of organellar Get3 homologs in plants which feature the TRC40-insert but have not been demonstrated to function in tailanchored protein targeting. Our analysis also highlights a large diversity of the ways Get3 homologs dimerize. Thus, based on the structural features of Get3 homologs, these proteins may have an unexplored functional diversity in all domains of life."],["dc.identifier.doi","10.1111/tra.12643"],["dc.identifier.pmid","30972921"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16154"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59973"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/65"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P04: Der GET-Rezeptor als ein Eingangstor zum ER und sein Zusammenspiel mit GET bodies"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.rights","CC BY-NC-ND 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-nd/4.0"],["dc.subject.ddc","610"],["dc.title","The natural history of Get3‐like chaperones"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","overview_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2020Journal Article Research Paper [["dc.bibliographiccitation.firstpage","72"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Molecular Cell"],["dc.bibliographiccitation.lastpage","86.e7"],["dc.bibliographiccitation.volume","80"],["dc.contributor.author","McDowell, Melanie A."],["dc.contributor.author","Heimes, Michael"],["dc.contributor.author","Fiorentino, Francesco"],["dc.contributor.author","Mehmood, Shahid"],["dc.contributor.author","Farkas, Ákos"],["dc.contributor.author","Coy-Vergara, Javier"],["dc.contributor.author","Wu, Di"],["dc.contributor.author","Bolla, Jani Reddy"],["dc.contributor.author","Schmid, Volker"],["dc.contributor.author","Heinze, Roger"],["dc.contributor.author","Wild, Klemens"],["dc.contributor.author","Flemming, Dirk"],["dc.contributor.author","Pfeffer, Stefan"],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","Robinson, Carol V."],["dc.contributor.author","Sinning, Irmgard"],["dc.date.accessioned","2021-04-14T08:23:23Z"],["dc.date.available","2021-04-14T08:23:23Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1016/j.molcel.2020.08.012"],["dc.identifier.pmid","32910895"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/80894"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/69"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/127"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P04: Der GET-Rezeptor als ein Eingangstor zum ER und sein Zusammenspiel mit GET bodies"],["dc.relation.issn","1097-2765"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.title","Structural Basis of Tail-Anchored Membrane Protein Biogenesis by the GET Insertase Complex"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2022Journal Article Research Paper [["dc.bibliographiccitation.artnumber","e202201036"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Journal of Cell Biology"],["dc.bibliographiccitation.volume","221"],["dc.contributor.author","Farkas, Ákos"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Bohnsack, Katherine E."],["dc.contributor.author","Schwappach, Blanche"],["dc.date.accessioned","2022-06-01T09:39:18Z"],["dc.date.available","2022-06-01T09:39:18Z"],["dc.date.issued","2022"],["dc.description.abstract","The guided entry of tail-anchored proteins (GET) pathway targets C-terminally anchored transmembrane proteins and protects cells from lipotoxicity. Here, we reveal perturbed ergosterol production in ∆get3 cells and demonstrate the sensitivity of GET pathway mutants to the sterol synthesis inhibiting drug terbinafine. Our data uncover a key enzyme of sterol synthesis, the hairpin membrane protein squalene monooxygenase (Erg1), as a non-canonical GET pathway client, thus rationalizing the lipotoxicity phenotypes of GET pathway mutants. Get3 recognizes the hairpin targeting element of Erg1 via its classical client-binding pocket. Intriguingly, we find that the GET pathway is especially important for the acute upregulation of Erg1 induced by low sterol conditions. We further identify several other proteins anchored to the endoplasmic reticulum (ER) membrane exclusively via a hairpin as putative clients of the GET pathway. Our findings emphasize the necessity of dedicated targeting pathways for high-efficiency targeting of particular clients during dynamic cellular adaptation and highlight hairpin proteins as a potential novel class of GET clients."],["dc.description.sponsorship"," Deutsche Forschungsgemeinschaft"],["dc.description.sponsorship","Germany’s Excellence Strategy"],["dc.description.sponsorship"," Max Planck Foundation"],["dc.description.sponsorship"," Deutsche Forschungsgemeinschaft"],["dc.identifier.doi","10.1083/jcb.202201036"],["dc.identifier.pmid","35587358"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/108437"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/176"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/488"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-572"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P04: Der GET-Rezeptor als ein Eingangstor zum ER und sein Zusammenspiel mit GET bodies"],["dc.relation","SFB 1190 | Z02: Massenspektrometrie-basierte Proteomanalyse"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.eissn","1540-8140"],["dc.relation.issn","0021-9525"],["dc.relation.workinggroup","RG K. Bohnsack (RNA Metabolism)"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0/"],["dc.title","Regulated targeting of the monotopic hairpin membrane protein Erg1 requires the GET pathway"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC