Now showing 1 - 5 of 5
  • 2013Journal Article
    [["dc.bibliographiccitation.firstpage","473"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Journal of Cell Science"],["dc.bibliographiccitation.lastpage","483"],["dc.bibliographiccitation.volume","126"],["dc.contributor.author","Powis, Katie"],["dc.contributor.author","Schrul, Bianca"],["dc.contributor.author","Tienson, Heather"],["dc.contributor.author","Gostimskaya, Irina"],["dc.contributor.author","Breker, Michal"],["dc.contributor.author","High, Stephen"],["dc.contributor.author","Schuldiner, Maya"],["dc.contributor.author","Jakob, Ursula"],["dc.contributor.author","Schwappach, Blanche"],["dc.date.accessioned","2017-09-07T11:48:18Z"],["dc.date.available","2017-09-07T11:48:18Z"],["dc.date.issued","2013"],["dc.description.abstract","The endomembrane system of yeast contains different tail-anchored proteins that are post-translationally targeted to membranes via their C-terminal transmembrane domain. This hydrophobic segment could be hazardous in the cytosol if membrane insertion fails, resulting in the need for energy-dependent chaperoning and the degradation of aggregated tail-anchored proteins. A cascade of GET proteins cooperates in a conserved pathway to accept newly synthesized tail-anchored proteins from ribosomes and guide them to a receptor at the endoplasmic reticulum, where membrane integration takes place. It is, however, unclear how the GET system reacts to conditions of energy depletion that might prevent membrane insertion and hence lead to the accumulation of hydrophobic proteins in the cytosol. Here we show that the ATPase Get3, which accommodates the hydrophobic tail anchor of clients, has a dual function: promoting tail-anchored protein insertion when glucose is abundant and serving as an ATP-independent holdase chaperone during energy depletion. Like the generic chaperones Hsp42, Ssa2, Sis1 and Hsp104, we found that Get3 moves reversibly to deposition sites for protein aggregates, hence supporting the sequestration of tail-anchored proteins under conditions that prevent tail-anchored protein insertion. Our findings support a ubiquitous role for the cytosolic GET complex as a triaging platform involved in cellular proteostasis."],["dc.identifier.doi","10.1242/jcs.112151"],["dc.identifier.gro","3142404"],["dc.identifier.isi","000316945600011"],["dc.identifier.pmid","23203805"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/10654"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/7908"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0021-9533"],["dc.rights","CC BY-NC-SA 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-sa/3.0"],["dc.title","Get3 is a holdase chaperone and moves to deposition sites for aggregated proteins when membrane targeting is blocked"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2017Journal Article Overview
    [["dc.bibliographiccitation.firstpage","672"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Traffic"],["dc.bibliographiccitation.lastpage","682"],["dc.bibliographiccitation.volume","18"],["dc.contributor.author","Geva, Yosef"],["dc.contributor.author","Crissman, Jonathan"],["dc.contributor.author","Arakel, Eric C."],["dc.contributor.author","Gómez-Navarro, Natalia"],["dc.contributor.author","Chuartzman, Silvia G."],["dc.contributor.author","Stahmer, Kyle R."],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","Miller, Elizabeth A."],["dc.contributor.author","Schuldiner, Maya"],["dc.date.accessioned","2018-04-23T11:49:04Z"],["dc.date.available","2018-04-23T11:49:04Z"],["dc.date.issued","2017"],["dc.description.abstract","The endoplasmic reticulum (ER) is the entry site of proteins into the endomembrane system. Proteins exit the ER via coat protein II (COPII) vesicles in a selective manner, mediated either by direct interaction with the COPII coat or aided by cargo receptors. Despite the fundamental role of such receptors in protein sorting, only a few have been identified. To further define the machinery that packages secretory cargo and targets proteins from the ER to Golgi membranes, we used multiple systematic approaches, which revealed 2 uncharacterized proteins that mediate the trafficking and maturation of Pma1, the essential yeast plasma membrane proton ATPase. Ydl121c (Exp1) is an ER protein that binds Pma1, is packaged into COPII vesicles, and whose deletion causes ER retention of Pma1. Ykl077w (Psg1) physically interacts with Exp1 and can be found in the Golgi and coat protein I (COPI) vesicles but does not directly bind Pma1. Loss of Psg1 causes enhanced degradation of Pma1 in the vacuole. Our findings suggest that Exp1 is a Pma1 cargo receptor and that Psg1 aids Pma1 maturation in the Golgi or affects its retrieval. More generally our work shows the utility of high content screens in the identification of novel trafficking components."],["dc.identifier.doi","10.1111/tra.12503"],["dc.identifier.gro","3142485"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13637"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/11"],["dc.language.iso","en"],["dc.notes.intern","lifescience updates Crossref Import"],["dc.notes.status","final"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P04: Der GET-Rezeptor als ein Eingangstor zum ER und sein Zusammenspiel mit GET bodies"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.issn","1398-9219"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.rights","CC BY 4.0"],["dc.title","Two novel effectors of trafficking and maturation of the yeast plasma membrane H+-ATPase"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dc.type.subtype","overview_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2016Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","39464"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Scientific Reports"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Rivera-Monroy, Jhon"],["dc.contributor.author","Musiol, Lena"],["dc.contributor.author","Unthan-Fechner, Kirsten"],["dc.contributor.author","Farkas, Ákos"],["dc.contributor.author","Clancy, Anne"],["dc.contributor.author","Coy-Vergara, Javier"],["dc.contributor.author","Weill, Uri"],["dc.contributor.author","Gockel, Sarah"],["dc.contributor.author","Lin, Shuh-Yow"],["dc.contributor.author","Corey, David P."],["dc.contributor.author","Kohl, Tobias"],["dc.contributor.author","Ströbel, Philipp"],["dc.contributor.author","Schuldiner, Maya"],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","Vilardi, Fabio"],["dc.date.accessioned","2018-04-23T11:49:05Z"],["dc.date.available","2018-04-23T11:49:05Z"],["dc.date.issued","2016"],["dc.description.abstract","Tail-anchored (TA) proteins are post-translationally inserted into membranes. The TRC40 pathway targets TA proteins to the endoplasmic reticulum via a receptor comprised of WRB and CAML. TRC40 pathway clients have been identified using in vitro assays, however, the relevance of the TRC40 pathway in vivo remains unknown. We followed the fate of TA proteins in two tissue-specific WRB knockout mouse models and found that their dependence on the TRC40 pathway in vitro did not predict their reaction to receptor depletion in vivo. The SNARE syntaxin 5 (Stx5) was extremely sensitive to disruption of the TRC40 pathway. Screening yeast TA proteins with mammalian homologues, we show that the particular sensitivity of Stx5 is conserved, possibly due to aggregation propensity of its cytoplasmic domain. We establish that Stx5 is an autophagy target that is inefficiently membrane-targeted by alternative pathways. Our results highlight an intimate relationship between the TRC40 pathway and cellular proteostasis."],["dc.identifier.doi","10.1038/srep39464"],["dc.identifier.gro","3142486"],["dc.identifier.pmid","28000760"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14116"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13638"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/187"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/8"],["dc.language.iso","en"],["dc.notes.intern","lifescience updates Crossref Import"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A06: Molekulare Grundlagen mitochondrialer Kardiomyopathien"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P04: Der GET-Rezeptor als ein Eingangstor zum ER und sein Zusammenspiel mit GET bodies"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.issn","2045-2322"],["dc.relation.workinggroup","RG Lehnart (Cellular Biophysics and Translational Cardiology Section)"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Mice lacking WRB reveal differential biogenesis requirements of tail-anchored proteins in vivo"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","370"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Traffic"],["dc.bibliographiccitation.lastpage","379"],["dc.bibliographiccitation.volume","19"],["dc.contributor.author","Weill, Uri"],["dc.contributor.author","Arakel, Eric C."],["dc.contributor.author","Goldmann, Omer"],["dc.contributor.author","Golan, Matan"],["dc.contributor.author","Chuartzman, Silvia"],["dc.contributor.author","Munro, Sean"],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","Schuldiner, Maya"],["dc.date.accessioned","2020-12-10T18:36:31Z"],["dc.date.available","2020-12-10T18:36:31Z"],["dc.date.issued","2018"],["dc.description.abstract","A third of yeast genes encode for proteins that function in the endomembrane system. However, the precise localization for many of these proteins is still uncertain. Here, we visualized a collection of ~500 N-terminally, green fluorescent protein (GFP), tagged proteins of the yeast Saccharomyces cerevisiae. By co-localizing them with 7 known markers of endomembrane compartments we determined the localization for over 200 of them. Using this approach, we create a systematic database of the various secretory compartments and identify several new residents. Focusing in, we now suggest that Lam5 resides in contact sites between the endoplasmic reticulum and the late Golgi. Additionally, analysis of interactions between the COPI coat and co-localizing proteins from our screen identifies a subset of proteins that are COPI-cargo. In summary, our approach defines the protein roster within each compartment enabling characterization of the physical and functional organization of the endomembrane system and its components."],["dc.identifier.doi","10.1111/tra.12560"],["dc.identifier.pmid","29527758"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/76654"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/24"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P04: Der GET-Rezeptor als ein Eingangstor zum ER und sein Zusammenspiel mit GET bodies"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation","SFB 1190 | Z03: Synthetische genetische Analyse, automatisierte Mikroskopie und Bildanalyse"],["dc.relation.issn","1398-9219"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.rights","CC BY 4.0"],["dc.title","Toolbox: Creating a systematic database of secretory pathway proteins uncovers new cargo for COPI"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2008Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","634"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Cell"],["dc.bibliographiccitation.lastpage","645"],["dc.bibliographiccitation.volume","134"],["dc.contributor.author","Schuldiner, Maya"],["dc.contributor.author","Metz, Jutta"],["dc.contributor.author","Schmid, Volker"],["dc.contributor.author","Denic, Vladimir"],["dc.contributor.author","Rakwalska, Magdalena"],["dc.contributor.author","Schmitt, Hans Dieter"],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","Weissman, Jonathan S."],["dc.date.accessioned","2017-09-07T11:48:16Z"],["dc.date.available","2017-09-07T11:48:16Z"],["dc.date.issued","2008"],["dc.description.abstract","Tail-anchored (TA) proteins, defined by the presence of a single C-terminal transmembrane domain (TMD), play critical roles throughout the secretory pathway and in mitochondria, yet the machinery responsible for their proper membrane insertion remains poorly characterized. Here we show that Get3, the yeast homolog of the TA-interacting factor Asna1/Trc40, specifically recognizes TMDs of TA proteins destined for the secretory pathway. Get3 recognition represents a key decision step, whose loss can lead to misinsertion of TA proteins into mitochondria. Get3-TA protein complexes are recruited for endoplasmic reticulum (ER) membrane insertion by the Get1/Get2 receptor. In vivo, the absence of Get1/Get2 leads to cytosolic aggregation of Get3-TA complexes and broad defects in TA protein biogenesis. In vitro reconstitution demonstrates that the Get proteins directly mediate insertion of newly synthesized TA proteins into ER membranes. Thus, the GET complex represents a critical mechanism for ensuring efficient and accurate targeting of TA proteins."],["dc.identifier.doi","10.1016/j.cell.2008.06.025"],["dc.identifier.gro","3143254"],["dc.identifier.isi","000258665800016"],["dc.identifier.pmid","18724936"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/6084"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/748"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1097-4172"],["dc.relation.issn","0092-8674"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","The GET Complex Mediates Insertion of Tail-Anchored Proteins into the ER Membrane"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS