Options
Schwappach-Pignataro, Blanche
Loading...
Preferred name
Schwappach-Pignataro, Blanche
Official Name
Schwappach-Pignataro, Blanche
Alternative Name
Schwappach-Pignataro, B.
Schwappach, Blanche
Schwappach, B.
Schwappach-Pignataro, Blanche
Main Affiliation
Now showing 1 - 10 of 69
2016Journal Article Research Paper [["dc.bibliographiccitation.journal","Matters"],["dc.contributor.author","Clancy, Anne"],["dc.contributor.author","Schrul, Bianca"],["dc.contributor.author","Schwappach, Blanche"],["dc.date.accessioned","2017-11-28T10:03:35Z"],["dc.date.available","2017-11-28T10:03:35Z"],["dc.date.issued","2016"],["dc.description.abstract","14-3-3 proteins are abundant modulators of cellular processes, in particular signal transduction. They function by binding to a broad spectrum of client proteins, thus affecting client protein localisation or function[1]Gardino 2011 [1]Morrison 2009 [2][2]. Animals and plants express 14-3-3 proteins encoded by several genes, which has made it difficult to study their unique rather than shared functions. The yeast Saccharomyces cerevisiae possesses only two highly homologous 14-3-3 genes, BMH1 and BMH2. Using this model system we now uncover novel aspects of functional specificity between the two yeast 14-3-3s. We show that bmh1 but not bmh2 cells display an altered morphology of the endomembrane system and specific trafficking defects under glucose starvation. This but not a second phenotype specific to the bmh1 strain, that is, the accumulation of glycogen, was rescued by overexpression of the nucleotide exchange factor Gea1, suggesting a role for Bmh1 in Gea1’s function or regulation."],["dc.identifier.doi","10.19185/matters.201609000004"],["dc.identifier.fs","626945"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/10613"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/61"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | Z03: Synthetische genetische Analyse, automatisierte Mikroskopie und Bildanalyse"],["dc.relation.issn","2297-8240"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.title","The guanine nucleotide exchange factor Gea1 rescues an isoform-specific 14-3-3 phenotype"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","unknown"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI2014Journal Article Research Paper [["dc.bibliographiccitation.firstpage","1055"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","FEMS Yeast Research"],["dc.bibliographiccitation.lastpage","1067"],["dc.bibliographiccitation.volume","14"],["dc.contributor.author","Elbaz-Alon, Yael"],["dc.contributor.author","Morgan, Bruce"],["dc.contributor.author","Clancy, Anne"],["dc.contributor.author","Amoako, Theresa N. E."],["dc.contributor.author","Zalckvar, Einat"],["dc.contributor.author","Dick, Tobias P."],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","Schuldiner, Maya"],["dc.date.accessioned","2017-09-07T11:45:25Z"],["dc.date.available","2017-09-07T11:45:25Z"],["dc.date.issued","2014"],["dc.description.abstract","Glutathione, the most abundant small-molecule thiol in eukaryotic cells, is synthesized de novo solely in the cytosol and must subsequently be transported to other cellular compartments. The mechanisms of glutathione transport into and out of organelles remain largely unclear. We show that budding yeast Opt2, a close homolog of the plasma membrane glutathione transporter Opt1, localizes to peroxisomes. We demonstrate that deletion of OPT2 leads to major defects in maintaining peroxisomal, mitochondrial, and cytosolic glutathione redox homeostasis. Furthermore, opt2 strains display synthetic lethality with deletions of genes central to iron homeostasis that require mitochondrial glutathione redox homeostasis. Our results shed new light on the importance of peroxisomes in cellular glutathione homeostasis."],["dc.identifier.doi","10.1111/1567-1364.12196"],["dc.identifier.gro","3142025"],["dc.identifier.isi","000344918500007"],["dc.identifier.pmid","25130273"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/3712"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Wiley-blackwell"],["dc.relation.eissn","1567-1364"],["dc.relation.issn","1567-1356"],["dc.title","The yeast oligopeptide transporter Opt2 is localized to peroxisomes and affects glutathione redox homeostasis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2005Journal Article [["dc.bibliographiccitation.firstpage","887"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Journal of Molecular and Cellular Cardiology"],["dc.bibliographiccitation.lastpage","894"],["dc.bibliographiccitation.volume","38"],["dc.contributor.author","Neagoe, Ioana"],["dc.contributor.author","Schwappach, Blanche"],["dc.date.accessioned","2017-09-07T11:54:18Z"],["dc.date.available","2017-09-07T11:54:18Z"],["dc.date.issued","2005"],["dc.identifier.doi","10.1016/j.yjmcc.2004.11.023"],["dc.identifier.gro","3145138"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2841"],["dc.language.iso","en"],["dc.notes.intern","Crossref Import"],["dc.notes.status","final"],["dc.relation.issn","0022-2828"],["dc.title","Pas de deux in groups of four—the biogenesis of K channels"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI2006Journal Article Research Paper [["dc.bibliographiccitation.firstpage","4353"],["dc.bibliographiccitation.issue","20"],["dc.bibliographiccitation.journal","Journal of Cell Science"],["dc.bibliographiccitation.lastpage","4363"],["dc.bibliographiccitation.volume","119"],["dc.contributor.author","Heusser, Katja"],["dc.contributor.author","Yuan, Hebao"],["dc.contributor.author","Neagoe, Ioana"],["dc.contributor.author","Tarasov, Andrei I."],["dc.contributor.author","Ashcroft, Frances M."],["dc.contributor.author","Schwappach, Blanche"],["dc.date.accessioned","2017-09-07T11:52:29Z"],["dc.date.available","2017-09-07T11:52:29Z"],["dc.date.issued","2006"],["dc.description.abstract","Arginine (Arg)-based endoplasmic reticulum (ER)-localization signals are involved in the quality control of different heteromultimeric membrane protein complexes. ATP-sensitive potassium (K-ATP) channels are unique because each subunit in the heterooctamer contains an Arg- based ER-localization signal. We have dissected the inactivation events that override the ER-localization activity of the eight peptide-sorting motifs. Employing a 14-3-3-scavenger construct to lower the availability of 14-3-3 proteins, we found that 14-3-3 proteins promote the cell-surface expression of heterologously expressed and native K-ATP channels. 14- 3- 3 proteins were detected in physical association with K-ATP channels in a pancreatic beta-cell line. Our results suggest that the Arg-based signal present in Kir6.2 is sterically masked by the SUR1 subunit. By contrast, 14-3-3 proteins functionally antagonized the Arg-based signal present in SUR1. The last ten amino acids were required for efficient 14-3-3 recruitment to multimeric forms of the Kir6.2 C-terminus. Channels containing a pore-forming subunit lacking these residues reached the cell surface inefficiently but were functionally indistinguishable from channels formed by the full-length subunits. In conclusion, 14-3-3 proteins promote the cell-surface transport of correctly assembled complexes but do not regulate the activity of K-ATP channels at the cell surface."],["dc.identifier.doi","10.1242/jcs.03196"],["dc.identifier.gro","3143613"],["dc.identifier.isi","000241217100023"],["dc.identifier.pmid","17038548"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1147"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0021-9533"],["dc.title","Scavenging of 14-3-3 proteins reveals their involvement in the cell-surface transport of ATP-sensitive K+ channels"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2005Review [["dc.bibliographiccitation.firstpage","717"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","EMBO reports"],["dc.bibliographiccitation.lastpage","722"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Michelsen, Kai"],["dc.contributor.author","Yuan, Hebao"],["dc.contributor.author","Schwappach, Blanche"],["dc.date.accessioned","2017-09-07T11:54:21Z"],["dc.date.available","2017-09-07T11:54:21Z"],["dc.date.issued","2005"],["dc.description.abstract","Arginine-based endoplasmic reticulum (ER)-localization signals are sorting motifs that are involved in the biosynthetic transport of multimeric membrane proteins. After their discovery in the invariant chain of the major histocompatibility complex class II, several hallmarks of these signals have emerged. They occur in polytopic membrane proteins that are subunits of membrane protein complexes; the presence of the signal maintains improperly assembled subunits in the ER by retention or retrieval until it is masked as a result of heteromultimeric assembly. A distinct consensus sequence and their position independence with respect to the distal termini of the protein distinguish them from other ER-sorting motifs. Recognition by the coatomer (COPI) vesicle coat explains ER retrieval. Often, di-leucine endocytic signals occur close to arginine-based signals. Recruitment of 14-3-3 family or PDZ-domain proteins can counteract ER-localization activity, as can phosphorylation. This, and the occurrence of arginine-based signals in alternatively spliced regions, implicates them in the regulated surface expression of multimeric membrane proteins in addition to their function in quality control."],["dc.identifier.doi","10.1038/sj.embor.7400480"],["dc.identifier.gro","3143818"],["dc.identifier.isi","000231249500009"],["dc.identifier.pmid","16065065"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1374"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1469-221X"],["dc.title","Hide and run - Arginine-based endoplasmic-reticulum-sorting motifs in the assembly of heteromultimeric membrane proteins"],["dc.type","review"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2016Journal Article Research Paper [["dc.bibliographiccitation.firstpage","134"],["dc.bibliographiccitation.issue","7631"],["dc.bibliographiccitation.journal","Nature"],["dc.bibliographiccitation.lastpage","138"],["dc.bibliographiccitation.volume","540"],["dc.contributor.author","Aviram, Naama"],["dc.contributor.author","Ast, Tslil"],["dc.contributor.author","Costa, Elizabeth A."],["dc.contributor.author","Arakel, Eric C."],["dc.contributor.author","Chuartzman, Silvia G."],["dc.contributor.author","Jan, Calvin H."],["dc.contributor.author","Haßdenteufel, Sarah"],["dc.contributor.author","Dudek, Johanna"],["dc.contributor.author","Jung, Martin"],["dc.contributor.author","Schorr, Stefan"],["dc.contributor.author","Zimmermann, Richard"],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","Weissman, Jonathan S."],["dc.contributor.author","Schuldiner, Maya"],["dc.date.accessioned","2018-04-23T11:49:05Z"],["dc.date.available","2018-04-23T11:49:05Z"],["dc.date.issued","2016"],["dc.description.abstract","In eukaryotes, up to one-third of cellular proteins are targeted to the endoplasmic reticulum, where they undergo folding, processing, sorting and trafficking to subsequent endomembrane compartments. Targeting to the endoplasmic reticulum has been shown to occur co-translationally by the signal recognition particle (SRP) pathway or post-translationally by the mammalian transmembrane recognition complex of 40 kDa (TRC40) and homologous yeast guided entry of tail-anchored proteins (GET) pathways. Despite the range of proteins that can be catered for by these two pathways, many proteins are still known to be independent of both SRP and GET, so there seems to be a critical need for an additional dedicated pathway for endoplasmic reticulum relay. We set out to uncover additional targeting proteins using unbiased high-content screening approaches. To this end, we performed a systematic visual screen using the yeast Saccharomyces cerevisiae and uncovered three uncharacterized proteins whose loss affected targeting. We suggest that these proteins work together and demonstrate that they function in parallel with SRP and GET to target a broad range of substrates to the endoplasmic reticulum. The three proteins, which we name Snd1, Snd2 and Snd3 (for SRP-independent targeting), can synthetically compensate for the loss of both the SRP and GET pathways, and act as a backup targeting system. This explains why it has previously been difficult to demonstrate complete loss of targeting for some substrates. Our discovery thus puts in place an essential piece of the endoplasmic reticulum targeting puzzle, highlighting how the targeting apparatus of the eukaryotic cell is robust, interlinked and flexible."],["dc.identifier.doi","10.1038/nature20169"],["dc.identifier.gro","3142487"],["dc.identifier.pmid","27905431"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13639"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/3"],["dc.language.iso","en"],["dc.notes.intern","lifescience updates Crossref Import"],["dc.notes.status","final"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P04: Der GET-Rezeptor als ein Eingangstor zum ER und sein Zusammenspiel mit GET bodies"],["dc.relation.issn","0028-0836"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.title","The SND proteins constitute an alternative targeting route to the endoplasmic reticulum"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2001Journal Article [["dc.bibliographiccitation.firstpage","400"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Kidney International"],["dc.bibliographiccitation.volume","60"],["dc.contributor.author","Zerangue, Noa"],["dc.contributor.author","Malan, Michael J."],["dc.contributor.author","Fried, Sharon R."],["dc.contributor.author","Dazin, Paul F."],["dc.contributor.author","Jan, Yuh Nung"],["dc.contributor.author","Jan, Lily Yeh"],["dc.contributor.author","Schwappach, Blanche"],["dc.date.accessioned","2022-03-01T11:46:17Z"],["dc.date.available","2022-03-01T11:46:17Z"],["dc.date.issued","2001"],["dc.identifier.doi","10.1046/j.1523-1755.2001.00821-6.x"],["dc.identifier.pii","S0085253815478718"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103615"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-531"],["dc.relation.issn","0085-2538"],["dc.title","Analysis of endoplasmic reticulum trafficking signals by combinatorial screening in mammalian cells"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI2003Journal Article Research Paper [["dc.bibliographiccitation.firstpage","638"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Current Biology"],["dc.bibliographiccitation.lastpage","646"],["dc.bibliographiccitation.volume","13"],["dc.contributor.author","Yuan, Hebao"],["dc.contributor.author","Michelsen, Kai"],["dc.contributor.author","Schwappach, Blanche"],["dc.date.accessioned","2017-09-07T11:45:02Z"],["dc.date.available","2017-09-07T11:45:02Z"],["dc.date.issued","2003"],["dc.description.abstract","Background: Arginine-based endoplasmic reticulum (ER) localization signals are involved in the heteromultimeric assembly of membrane protein complexes like ATP-sensitive potassium channels (K-ATP) or GABA(B), G protein-coupled receptors. They constitute a trafficking checkpoint that prevents ER exit of unassembled subunits or partially assembled complexes. For K-ATP channels, the mechanism that leads to masking of the ER localization signals in the fully assembled octameric complex is unknown. Results: By employing a tetrameric affinity construct of the C terminus of the K-ATP channel alpha subunit, Kir6.2, we found that 14-3-3 isoforms epsilon and zeta specifically recognize the arginine-based ER localization signal present in this cytosolic tail. The interaction was reconstituted by using purified 14-3-3 proteins. Competition with a nonphosphorylated 14-3-3 high-affinity binding peptide implies that the canonical substrate binding groove of 14-3-3 is involved. Comparison of monomeric CD4, dimeric CD8, and artificially tetramerized CD4 fusions correlates the copy number of the tail containing the arginine-based signal with 14-3-3 binding, resulting in the surface expression of the membrane protein. Binding experiments revealed that the COPI vesicle coat can specifically recognize the arginine-based ER localization signal and competes with 14-3-3 for the binding site. Conclusions: The COP[ vesicle coat and proteins of the 14-3-3 family recognize arginine-based ER localization signals on multimeric membrane proteins. The equilibrium between these two competing reactions depends on the valency and spatial arrangement of the signal-containing tails. We propose a mechanism in which 14-3-3 bound to the correctly assembled multimer mediates release of the complex from the ER."],["dc.identifier.doi","10.1016/S0960-9822(03)00208-2"],["dc.identifier.gro","3144113"],["dc.identifier.isi","000182490000019"],["dc.identifier.pmid","12699619"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1702"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0960-9822"],["dc.title","14-3-3 dimers probe the assembly status of multimeric membrane proteins"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2020Journal Article Research Paper [["dc.bibliographiccitation.firstpage","eaaz1436"],["dc.bibliographiccitation.issue","647"],["dc.bibliographiccitation.journal","Science Signaling"],["dc.bibliographiccitation.volume","13"],["dc.contributor.author","Menzel, Julia"],["dc.contributor.author","Kownatzki-Danger, Daniel"],["dc.contributor.author","Tokar, Sergiy"],["dc.contributor.author","Ballone, Alice"],["dc.contributor.author","Unthan-Fechner, Kirsten"],["dc.contributor.author","Kilisch, Markus"],["dc.contributor.author","Lenz, Christof"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Mori, Mattia"],["dc.contributor.author","Ottmann, Christian"],["dc.contributor.author","Shattock, Michael J."],["dc.contributor.author","Lehnart, Stephan E."],["dc.contributor.author","Schwappach, Blanche"],["dc.date.accessioned","2021-04-14T08:32:51Z"],["dc.date.available","2021-04-14T08:32:51Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1126/scisignal.aaz1436"],["dc.identifier.pmid","32873725"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/84038"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/68"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/368"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/126"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A07: Rolle der TRC40-Maschinerie im Proteostase-Netzwerk von Kardiomyozyten"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation.eissn","1937-9145"],["dc.relation.issn","1945-0877"],["dc.relation.workinggroup","RG Lehnart"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.relation.workinggroup","RG Lenz"],["dc.relation.workinggroup","RG Urlaub (Bioanalytische Massenspektrometrie)"],["dc.title","14-3-3 binding creates a memory of kinase action by stabilizing the modified state of phospholamban"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2009Journal Article [["dc.bibliographiccitation.firstpage","3605"],["dc.bibliographiccitation.issue","20"],["dc.bibliographiccitation.journal","Journal of Cell Science"],["dc.bibliographiccitation.lastpage","3612"],["dc.bibliographiccitation.volume","122"],["dc.contributor.author","Rabu, Catherine"],["dc.contributor.author","Schmid, Volker"],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","High, Stephen"],["dc.date.accessioned","2017-09-07T11:46:47Z"],["dc.date.available","2017-09-07T11:46:47Z"],["dc.date.issued","2009"],["dc.description.abstract","Tail-anchored proteins are a distinct class of integral membrane proteins located in several eukaryotic organelles, where they perform a diverse range of functions. These proteins have in common the C-terminal location of their transmembrane anchor and the resulting post-translational nature of their membrane insertion, which, unlike the co-translational membrane insertion of most other proteins, is not coupled to ongoing protein synthesis. The study of tail-anchored proteins has provided a paradigm for understanding the components and pathways that mediate post-translational biogenesis of membrane proteins at the endoplasmic reticulum. In this Commentary, we review recent studies that have converged at a consensus regarding the molecular mechanisms that underlie this process-namely, that multiple pathways underlie the biogenesis of tail-anchored proteins at the endoplasmic reticulum."],["dc.identifier.doi","10.1242/jcs.041210"],["dc.identifier.gro","3143040"],["dc.identifier.isi","000270570800003"],["dc.identifier.pmid","19812306"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/510"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0021-9533"],["dc.title","Biogenesis of tail-anchored proteins: the beginning for the end?"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS