Options
Schwappach-Pignataro, Blanche
Loading...
Preferred name
Schwappach-Pignataro, Blanche
Official Name
Schwappach-Pignataro, Blanche
Alternative Name
Schwappach-Pignataro, B.
Schwappach, Blanche
Schwappach, B.
Schwappach-Pignataro, Blanche
Main Affiliation
Now showing 1 - 10 of 21
2021Journal Article Research Paper [["dc.bibliographiccitation.artnumber","5715"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Gomkale, Ridhima"],["dc.contributor.author","Linden, Andreas"],["dc.contributor.author","Neumann, Piotr"],["dc.contributor.author","Schendzielorz, Alexander Benjamin"],["dc.contributor.author","Stoldt, Stefan"],["dc.contributor.author","Dybkov, Olexandr"],["dc.contributor.author","Kilisch, Markus"],["dc.contributor.author","Schulz, Christian"],["dc.contributor.author","Cruz-Zaragoza, Luis Daniel"],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2021-10-01T09:57:33Z"],["dc.date.available","2021-10-01T09:57:33Z"],["dc.date.issued","2021"],["dc.description.abstract","Abstract Nuclear-encoded mitochondrial proteins destined for the matrix have to be transported across two membranes. The TOM and TIM23 complexes facilitate the transport of precursor proteins with N-terminal targeting signals into the matrix. During transport, precursors are recognized by the TIM23 complex in the inner membrane for handover from the TOM complex. However, we have little knowledge on the organization of the TOM-TIM23 transition zone and on how precursor transfer between the translocases occurs. Here, we have designed a precursor protein that is stalled during matrix transport in a TOM-TIM23-spanning manner and enables purification of the translocation intermediate. Combining chemical cross-linking with mass spectrometric analyses and structural modeling allows us to map the molecular environment of the intermembrane space interface of TOM and TIM23 as well as the import motor interactions with amino acid resolution. Our analyses provide a framework for understanding presequence handover and translocation during matrix protein transport."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2021"],["dc.identifier.doi","10.1038/s41467-021-26016-1"],["dc.identifier.pii","26016"],["dc.identifier.pmid","34588454"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/89863"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/348"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/157"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-469"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P01: Untersuchung der Unterschiede in der Zusammensetzung, Funktion und Position von individuellen MICOS Komplexen in einzelnen Säugerzellen"],["dc.relation","SFB 1190 | P04: Der GET-Rezeptor als ein Eingangstor zum ER und sein Zusammenspiel mit GET bodies"],["dc.relation","SFB 1190 | P13: Protein Transport über den mitochondrialen Carrier Transportweg"],["dc.relation","SFB 1190 | Z02: Massenspektrometrie-basierte Proteomanalyse"],["dc.relation.eissn","2041-1723"],["dc.relation.workinggroup","RG Ficner (Molecular Structural Biology)"],["dc.relation.workinggroup","RG Jakobs (Structure and Dynamics of Mitochondria)"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.relation.workinggroup","RG Urlaub (Bioanalytische Massenspektrometrie)"],["dc.rights","CC BY 4.0"],["dc.title","Mapping protein interactions in the active TOM-TIM23 supercomplex"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2018Journal Article Overview [["dc.bibliographiccitation.artnumber","jcs209890"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Journal of Cell Science"],["dc.bibliographiccitation.volume","131"],["dc.contributor.author","Arakel, Eric C."],["dc.contributor.author","Schwappach, Blanche"],["dc.date.accessioned","2020-12-10T18:41:52Z"],["dc.date.available","2020-12-10T18:41:52Z"],["dc.date.issued","2018"],["dc.description.abstract","The coat protein complex I (COPI) allows the precise sorting of lipids and proteins between Golgi cisternae and retrieval from the Golgi to the ER. This essential role maintains the identity of the early secretory pathway and impinges on key cellular processes, such as protein quality control. In this Cell Science at a Glance and accompanying poster, we illustrate the different stages of COPI-coated vesicle formation and revisit decades of research in the context of recent advances in the elucidation of COPI coat structure. By calling attention to an array of questions that have remained unresolved, this review attempts to refocus the perspectives of the field."],["dc.identifier.doi","10.1242/jcs.209890"],["dc.identifier.pmid","29535154"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/77706"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/25"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P04: Der GET-Rezeptor als ein Eingangstor zum ER und sein Zusammenspiel mit GET bodies"],["dc.relation.haserratum","/handle/2/102924"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.rights","CC BY 3.0"],["dc.title","Formation of COPI-coated vesicles at a glance"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","overview_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2013Journal Article [["dc.bibliographiccitation.firstpage","473"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Journal of Cell Science"],["dc.bibliographiccitation.lastpage","483"],["dc.bibliographiccitation.volume","126"],["dc.contributor.author","Powis, Katie"],["dc.contributor.author","Schrul, Bianca"],["dc.contributor.author","Tienson, Heather"],["dc.contributor.author","Gostimskaya, Irina"],["dc.contributor.author","Breker, Michal"],["dc.contributor.author","High, Stephen"],["dc.contributor.author","Schuldiner, Maya"],["dc.contributor.author","Jakob, Ursula"],["dc.contributor.author","Schwappach, Blanche"],["dc.date.accessioned","2017-09-07T11:48:18Z"],["dc.date.available","2017-09-07T11:48:18Z"],["dc.date.issued","2013"],["dc.description.abstract","The endomembrane system of yeast contains different tail-anchored proteins that are post-translationally targeted to membranes via their C-terminal transmembrane domain. This hydrophobic segment could be hazardous in the cytosol if membrane insertion fails, resulting in the need for energy-dependent chaperoning and the degradation of aggregated tail-anchored proteins. A cascade of GET proteins cooperates in a conserved pathway to accept newly synthesized tail-anchored proteins from ribosomes and guide them to a receptor at the endoplasmic reticulum, where membrane integration takes place. It is, however, unclear how the GET system reacts to conditions of energy depletion that might prevent membrane insertion and hence lead to the accumulation of hydrophobic proteins in the cytosol. Here we show that the ATPase Get3, which accommodates the hydrophobic tail anchor of clients, has a dual function: promoting tail-anchored protein insertion when glucose is abundant and serving as an ATP-independent holdase chaperone during energy depletion. Like the generic chaperones Hsp42, Ssa2, Sis1 and Hsp104, we found that Get3 moves reversibly to deposition sites for protein aggregates, hence supporting the sequestration of tail-anchored proteins under conditions that prevent tail-anchored protein insertion. Our findings support a ubiquitous role for the cytosolic GET complex as a triaging platform involved in cellular proteostasis."],["dc.identifier.doi","10.1242/jcs.112151"],["dc.identifier.gro","3142404"],["dc.identifier.isi","000316945600011"],["dc.identifier.pmid","23203805"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/10654"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/7908"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0021-9533"],["dc.rights","CC BY-NC-SA 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-sa/3.0"],["dc.title","Get3 is a holdase chaperone and moves to deposition sites for aggregated proteins when membrane targeting is blocked"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2017Journal Article Overview [["dc.bibliographiccitation.firstpage","672"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Traffic"],["dc.bibliographiccitation.lastpage","682"],["dc.bibliographiccitation.volume","18"],["dc.contributor.author","Geva, Yosef"],["dc.contributor.author","Crissman, Jonathan"],["dc.contributor.author","Arakel, Eric C."],["dc.contributor.author","Gómez-Navarro, Natalia"],["dc.contributor.author","Chuartzman, Silvia G."],["dc.contributor.author","Stahmer, Kyle R."],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","Miller, Elizabeth A."],["dc.contributor.author","Schuldiner, Maya"],["dc.date.accessioned","2018-04-23T11:49:04Z"],["dc.date.available","2018-04-23T11:49:04Z"],["dc.date.issued","2017"],["dc.description.abstract","The endoplasmic reticulum (ER) is the entry site of proteins into the endomembrane system. Proteins exit the ER via coat protein II (COPII) vesicles in a selective manner, mediated either by direct interaction with the COPII coat or aided by cargo receptors. Despite the fundamental role of such receptors in protein sorting, only a few have been identified. To further define the machinery that packages secretory cargo and targets proteins from the ER to Golgi membranes, we used multiple systematic approaches, which revealed 2 uncharacterized proteins that mediate the trafficking and maturation of Pma1, the essential yeast plasma membrane proton ATPase. Ydl121c (Exp1) is an ER protein that binds Pma1, is packaged into COPII vesicles, and whose deletion causes ER retention of Pma1. Ykl077w (Psg1) physically interacts with Exp1 and can be found in the Golgi and coat protein I (COPI) vesicles but does not directly bind Pma1. Loss of Psg1 causes enhanced degradation of Pma1 in the vacuole. Our findings suggest that Exp1 is a Pma1 cargo receptor and that Psg1 aids Pma1 maturation in the Golgi or affects its retrieval. More generally our work shows the utility of high content screens in the identification of novel trafficking components."],["dc.identifier.doi","10.1111/tra.12503"],["dc.identifier.gro","3142485"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13637"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/11"],["dc.language.iso","en"],["dc.notes.intern","lifescience updates Crossref Import"],["dc.notes.status","final"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P04: Der GET-Rezeptor als ein Eingangstor zum ER und sein Zusammenspiel mit GET bodies"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.issn","1398-9219"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.rights","CC BY 4.0"],["dc.title","Two novel effectors of trafficking and maturation of the yeast plasma membrane H+-ATPase"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dc.type.subtype","overview_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2019Journal Article Research Paper [["dc.bibliographiccitation.firstpage","jcs230094"],["dc.bibliographiccitation.issue","13"],["dc.bibliographiccitation.journal","Journal of Cell Science"],["dc.bibliographiccitation.volume","132"],["dc.contributor.author","Coy-Vergara, Javier"],["dc.contributor.author","Rivera-Monroy, Jhon"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Lenz, Christof"],["dc.contributor.author","Schwappach, Blanche"],["dc.date.accessioned","2020-12-10T18:41:53Z"],["dc.date.available","2020-12-10T18:41:53Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1242/jcs.230094"],["dc.identifier.pmid","31182645"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16428"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/77717"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/291"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/72"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","Merged from goescholar"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A07: Rolle der TRC40-Maschinerie im Proteostase-Netzwerk von Kardiomyozyten"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | Z02: Massenspektrometrie-basierte Proteomanalyse"],["dc.relation.workinggroup","RG Lenz"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.relation.workinggroup","RG Urlaub (Bioanalytische Massenspektrometrie)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","A trap mutant reveals the physiological client spectrum of TRC40"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2019Journal Article Research Paper [["dc.bibliographiccitation.firstpage","jcs232124"],["dc.bibliographiccitation.issue","16"],["dc.bibliographiccitation.journal","Journal of Cell Science"],["dc.bibliographiccitation.volume","132"],["dc.contributor.author","Arakel, Eric C."],["dc.contributor.author","Huranova, Martina"],["dc.contributor.author","Estrada, Alejandro F."],["dc.contributor.author","Rau, E-Ming"],["dc.contributor.author","Spang, Anne"],["dc.contributor.author","Schwappach, Blanche"],["dc.date.accessioned","2020-12-10T18:41:53Z"],["dc.date.available","2020-12-10T18:41:53Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1242/jcs.232124"],["dc.identifier.pmid","31331965"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16843"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/77719"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/79"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","Merged from goescholar"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P04: Der GET-Rezeptor als ein Eingangstor zum ER und sein Zusammenspiel mit GET bodies"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Dissection of GTPase-activating proteins reveals functional asymmetry in the COPI coat of budding yeast"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2016Journal Article Research Paper [["dc.bibliographiccitation.artnumber","39464"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Scientific Reports"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Rivera-Monroy, Jhon"],["dc.contributor.author","Musiol, Lena"],["dc.contributor.author","Unthan-Fechner, Kirsten"],["dc.contributor.author","Farkas, Ákos"],["dc.contributor.author","Clancy, Anne"],["dc.contributor.author","Coy-Vergara, Javier"],["dc.contributor.author","Weill, Uri"],["dc.contributor.author","Gockel, Sarah"],["dc.contributor.author","Lin, Shuh-Yow"],["dc.contributor.author","Corey, David P."],["dc.contributor.author","Kohl, Tobias"],["dc.contributor.author","Ströbel, Philipp"],["dc.contributor.author","Schuldiner, Maya"],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","Vilardi, Fabio"],["dc.date.accessioned","2018-04-23T11:49:05Z"],["dc.date.available","2018-04-23T11:49:05Z"],["dc.date.issued","2016"],["dc.description.abstract","Tail-anchored (TA) proteins are post-translationally inserted into membranes. The TRC40 pathway targets TA proteins to the endoplasmic reticulum via a receptor comprised of WRB and CAML. TRC40 pathway clients have been identified using in vitro assays, however, the relevance of the TRC40 pathway in vivo remains unknown. We followed the fate of TA proteins in two tissue-specific WRB knockout mouse models and found that their dependence on the TRC40 pathway in vitro did not predict their reaction to receptor depletion in vivo. The SNARE syntaxin 5 (Stx5) was extremely sensitive to disruption of the TRC40 pathway. Screening yeast TA proteins with mammalian homologues, we show that the particular sensitivity of Stx5 is conserved, possibly due to aggregation propensity of its cytoplasmic domain. We establish that Stx5 is an autophagy target that is inefficiently membrane-targeted by alternative pathways. Our results highlight an intimate relationship between the TRC40 pathway and cellular proteostasis."],["dc.identifier.doi","10.1038/srep39464"],["dc.identifier.gro","3142486"],["dc.identifier.pmid","28000760"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14116"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13638"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/187"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/8"],["dc.language.iso","en"],["dc.notes.intern","lifescience updates Crossref Import"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A06: Molekulare Grundlagen mitochondrialer Kardiomyopathien"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P04: Der GET-Rezeptor als ein Eingangstor zum ER und sein Zusammenspiel mit GET bodies"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.issn","2045-2322"],["dc.relation.workinggroup","RG Lehnart (Cellular Biophysics and Translational Cardiology Section)"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Mice lacking WRB reveal differential biogenesis requirements of tail-anchored proteins in vivo"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2013Journal Article [["dc.bibliographiccitation.artnumber","e59590"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","PLoS ONE"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Leznicki, Pawel"],["dc.contributor.author","Roebuck, Quentin P."],["dc.contributor.author","Wunderley, Lydia"],["dc.contributor.author","Clancy, Anne"],["dc.contributor.author","Krysztofinska, Ewelina M."],["dc.contributor.author","Isaacson, Rivka L."],["dc.contributor.author","Warwicker, Jim"],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","High, Stephen"],["dc.date.accessioned","2017-09-07T11:47:44Z"],["dc.date.available","2017-09-07T11:47:44Z"],["dc.date.issued","2013"],["dc.description.abstract","Background: The BAG6 protein is a subunit of a heterotrimeric complex that binds a range of membrane and secretory protein precursors localized to the cytosol, enforcing quality control and influencing their subsequent fate. Methodology and Principal Findings: BAG6 has an N-terminal ubiquitin-like domain, and a C-terminal Bcl-2-associated athanogene domain, separated by a large central proline-rich region. We have used in vitro binding approaches to identify regions of BAG6 important for its interactions with: i) the small-glutamine rich tetratricopeptide repeat-containing protein alpha (SGTA) and ii) two model tail-anchored membrane proteins as a paradigm for its hydrophobic substrates. We show that the BAG6-UBL is essential for binding to SGTA, and find that the UBL of a second subunit of the BAG6-complex, ubiquitin-like protein 4A (UBL4A), competes for SGTA binding. Our data show that this binding is selective, and suggest that SGTA can bind either BAG6, or UBL4A, but not both at the same time. We adapted our in vitro binding assay to study the association of BAG6 with an immobilized tail-anchored protein, Sec61b, and find both the UBL and BAG domains are dispensable for binding this substrate. This conclusion was further supported using a heterologous subcellular localization assay in yeast, where the BAG6-dependent nuclear relocalization of a second tail-anchored protein, GFP-Sed5, also required neither the UBL, nor the BAG domain of BAG6. Significance: On the basis of these findings, we propose a working model where the large central region of the BAG6 protein provides a binding site for a diverse group of substrates, many of which expose a hydrophobic stretch of polypeptide. This arrangement would enable the BAG6 complex to bring together its substrates with potential effectors including those recruited via its N-terminal UBL. Such effectors may include SGTA, and the resulting assemblies influence the subsequent fate of the hydrophobic BAG6 substrates."],["dc.identifier.doi","10.1371/journal.pone.0059590"],["dc.identifier.gro","3142369"],["dc.identifier.isi","000316549400072"],["dc.identifier.pmid","23533635"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/8748"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/7519"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1932-6203"],["dc.rights","CC BY 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/3.0"],["dc.title","The Association of BAG6 with SGTA and Tail-Anchored Proteins"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2014Journal Article Research Paper [["dc.bibliographiccitation.firstpage","631"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","EMBO reports"],["dc.bibliographiccitation.lastpage","634"],["dc.bibliographiccitation.volume","15"],["dc.contributor.author","Nussbeck, Sara Y."],["dc.contributor.author","Weil, Philipp"],["dc.contributor.author","Menzel, Julia"],["dc.contributor.author","Marzec, Bartlomiej"],["dc.contributor.author","Lorberg, Kai"],["dc.contributor.author","Schwappach, Blanche"],["dc.date.accessioned","2017-09-07T11:46:13Z"],["dc.date.available","2017-09-07T11:46:13Z"],["dc.date.issued","2014"],["dc.identifier.doi","10.15252/embr.201338358"],["dc.identifier.gro","3142110"],["dc.identifier.isi","000337360300005"],["dc.identifier.pmid","24833749"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/12129"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4655"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/43"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | INF: Unterstützung der SFB 1002 Forschungsdatenintegration, -visualisierung und -nachnutzung"],["dc.relation.eissn","1469-3178"],["dc.relation.issn","1469-221X"],["dc.relation.workinggroup","RG Nußbeck"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.rights","CC BY-NC-ND 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-nd/4.0"],["dc.title","The laboratory notebook in the 21st century The electronic laboratory notebook would enhance good scientific practice and increase research productivity"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2021Journal Article Research Paper [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Zhang, Ying"],["dc.contributor.author","De Laurentiis, Evelina"],["dc.contributor.author","Bohnsack, Katherine E."],["dc.contributor.author","Wahlig, Mascha"],["dc.contributor.author","Ranjan, Namit"],["dc.contributor.author","Gruseck, Simon"],["dc.contributor.author","Hackert, Philipp"],["dc.contributor.author","Wölfle, Tina"],["dc.contributor.author","Rodnina, Marina V."],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","Rospert, Sabine"],["dc.date.accessioned","2021-04-14T08:28:39Z"],["dc.date.available","2021-04-14T08:28:39Z"],["dc.date.issued","2021"],["dc.description.abstract","The guided entry of tail-anchored proteins (GET) pathway assists in the posttranslational delivery of tail-anchored proteins, containing a single C-terminal transmembrane domain, to the ER. Here we uncover how the yeast GET pathway component Get4/5 facilitates capture of tail-anchored proteins by Sgt2, which interacts with tail-anchors and hands them over to the targeting component Get3. Get4/5 binds directly and with high affinity to ribosomes, positions Sgt2 close to the ribosomal tunnel exit, and facilitates the capture of tail-anchored proteins by Sgt2. The contact sites of Get4/5 on the ribosome overlap with those of SRP, the factor mediating cotranslational ER-targeting. Exposure of internal transmembrane domains at the tunnel exit induces high-affinity ribosome binding of SRP, which in turn prevents ribosome binding of Get4/5. In this way, the position of a transmembrane domain within nascent ER-targeted proteins mediates partitioning into either the GET or SRP pathway directly at the ribosomal tunnel exit."],["dc.identifier.doi","10.1038/s41467-021-20981-3"],["dc.identifier.pmid","33542241"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/82670"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/220"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/139"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P04: Der GET-Rezeptor als ein Eingangstor zum ER und sein Zusammenspiel mit GET bodies"],["dc.relation","SFB 1190 | P16: Co-translationaler Einbau von Proteinen in die bakterielle Plasmamembran"],["dc.relation.eissn","2041-1723"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.relation.workinggroup","RG K. Bohnsack (RNA Metabolism)"],["dc.relation.workinggroup","RG Rodnina"],["dc.rights","CC BY 4.0"],["dc.title","Ribosome-bound Get4/5 facilitates the capture of tail-anchored proteins by Sgt2 in yeast"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC
- «
- 1 (current)
- 2
- 3
- »