Options
Lutz, Susanne
Loading...
Preferred name
Lutz, Susanne
Official Name
Lutz, Susanne
Alternative Name
Lutz, S.
Main Affiliation
Now showing 1 - 2 of 2
2015Journal Article Research Paper [["dc.bibliographiccitation.artnumber","e0137519"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","PLoS ONE"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Jatho, Aline"],["dc.contributor.author","Hartmann, Svenja"],["dc.contributor.author","Kittana, Naim"],["dc.contributor.author","Muegge, Felicitas"],["dc.contributor.author","Wuertz, Christina M."],["dc.contributor.author","Tiburcy, Malte"],["dc.contributor.author","Zimmermann, Wolfram-Hubertus"],["dc.contributor.author","Katschinski, Dörthe M."],["dc.contributor.author","Lutz, Susanne"],["dc.date.accessioned","2017-09-07T11:43:28Z"],["dc.date.available","2017-09-07T11:43:28Z"],["dc.date.issued","2015"],["dc.description.abstract","Introduction RhoA has been shown to be beneficial in cardiac disease models when overexpressed in cardiomyocytes, whereas its role in cardiac fibroblasts (CF) is still poorly understood. During cardiac remodeling CF undergo a transition towards a myofibroblast phenotype thereby showing an increased proliferation and migration rate. Both processes involve the remodeling of the cytoskeleton. Since RhoA is known to be a major regulator of the cytoskeleton, we analyzed its role in CF and its effect on myofibroblast characteristics in 2 D and 3D models. Results Downregulation of RhoA was shown to strongly affect the actin cytoskeleton. It decreased the myofibroblast marker alpha-sm-actin, but increased certain fibrosis-associated factors like TGF-beta and collagens. Also, the detailed analysis of CTGF expression demonstrated that the outcome of RhoA signaling strongly depends on the involved stimulus. Furthermore, we show that proliferation of myofibroblasts rely on RhoA and tubulin acetylation. In assays accessing three different types of migration, we demonstrate that RhoA/ROCK/Dia1 are important for 2D migration and the repression of RhoA and Dia1 signaling accelerates 3D migration. Finally, we show that a downregulation of RhoA in CF impacts the viscoelastic and contractile properties of engineered tissues. Conclusion RhoA positively and negatively influences myofibroblast characteristics by differential signaling cascades and depending on environmental conditions. These include gene expression, migration and proliferation. Reduction of RhoA leads to an increased viscoelasticity and a decrease in contractile force in engineered cardiac tissue."],["dc.description.sponsorship","Open-Access Publikationsfonds 2015"],["dc.identifier.doi","10.1371/journal.pone.0137519"],["dc.identifier.gro","3141809"],["dc.identifier.isi","000362511000003"],["dc.identifier.pmid","26448568"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/12214"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1312"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/118"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | C02: RhoGTPasen und ihre Bedeutung für die Last-abhängige Myokardfibrose"],["dc.relation","SFB 1002 | C04: Fibroblasten-Kardiomyozyten Interaktion im gesunden und erkrankten Herzen: Mechanismen und therapeutische Interventionen bei Kardiofibroblastopathien"],["dc.relation","SFB 1002 | C06: Mechanismen und Regulation der koronaren Gefäßneubildung"],["dc.relation.issn","1932-6203"],["dc.relation.workinggroup","RG Lutz (G Protein-Coupled Receptor Mediated Signaling)"],["dc.relation.workinggroup","RG Tiburcy (Stem Cell Disease Modeling)"],["dc.relation.workinggroup","RG Zimmermann (Engineered Human Myocardium)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","RhoA Ambivalently Controls Prominent Myofibroblast Characteritics by Involving Distinct Signaling Routes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2021Journal Article Research Paper [["dc.bibliographiccitation.firstpage","989"],["dc.bibliographiccitation.journal","International Journal of Nanomedicine"],["dc.bibliographiccitation.lastpage","1000"],["dc.bibliographiccitation.volume","Volume 16"],["dc.contributor.author","Kittana, Naim"],["dc.contributor.author","Assali, Mohyeddin"],["dc.contributor.author","Zimmermann, Wolfram-Hubertus"],["dc.contributor.author","Liaw, Norman"],["dc.contributor.author","Santos, Gabriela Leao"],["dc.contributor.author","Rehman, Abdul"],["dc.contributor.author","Lutz, Susanne"],["dc.date.accessioned","2021-04-14T08:29:53Z"],["dc.date.available","2021-04-14T08:29:53Z"],["dc.date.issued","2021"],["dc.description.abstract","Background: Under certain conditions, the physiological repair of connective tissues might fail to restore the original structure and function. Optimized engineered connective tissues (ECTs) with biophysical properties adapted to the target tissue could be used as a substitution therapy. This study aimed to investigate the effect of ECT enforcement by a complex of multiwall carbon nanotubes with chitosan (C-MWCNT) to meet in vivo demands.\r\nMaterials and Methods: ECTs were constructed from human foreskin fibroblasts (HFF-1) in collagen type I and enriched with the three different percentages 0.025, 0.05 and 0.1% of C-MWCNT. Characterization of the physical properties was performed by biomechanical studies using unidirectional strain.\r\nResults: Supplementation with 0.025% C-MWCNT moderately increased the tissue stiffness, reflected by Young’s modulus, compared to tissues without C-MWCNT. Supplementation of ECTs with 0.1% C-MWCNT reduced tissue contraction and increased the elasticity and the extensibility, reflected by the yield point and ultimate strain, respectively. Consequently, the ECTs with 0.1% C-MWCNT showed a higher resilience and toughness as control tissues. Fluorescence tissue imaging demonstrated the longitudinal alignment of all cells independent of the condition.\r\nConclusion: Supplementation with C-MWCNT can enhance the biophysical properties of ECTs, which could be advantageous for applications in connective tissue repair."],["dc.identifier.doi","10.2147/IJN.S289107"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/83018"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/387"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | C04: Fibroblasten-Kardiomyozyten Interaktion im gesunden und erkrankten Herzen: Mechanismen und therapeutische Interventionen bei Kardiofibroblastopathien"],["dc.relation","SFB 1002 | S01: In vivo und in vitro Krankheitsmodelle"],["dc.relation.eissn","1178-2013"],["dc.relation.workinggroup","RG Lutz (G Protein-Coupled Receptor Mediated Signaling)"],["dc.relation.workinggroup","RG Zimmermann (Engineered Human Myocardium)"],["dc.rights","CC BY-NC 3.0"],["dc.title","Modulating the Biomechanical Properties of Engineered Connective Tissues by Chitosan-Coated Multiwall Carbon Nanotubes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI