Options
Lutz, Susanne
Loading...
Preferred name
Lutz, Susanne
Official Name
Lutz, Susanne
Alternative Name
Lutz, S.
Main Affiliation
Now showing 1 - 4 of 4
2021Journal Article Research Paper [["dc.bibliographiccitation.firstpage","741"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Cells"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Weber, Pamina"],["dc.contributor.author","Baltus, Doris"],["dc.contributor.author","Jatho, Aline"],["dc.contributor.author","Drews, Oliver"],["dc.contributor.author","Zelarayan, Laura C."],["dc.contributor.author","Wieland, Thomas"],["dc.contributor.author","Lutz, Susanne"],["dc.date.accessioned","2021-06-01T09:42:32Z"],["dc.date.available","2021-06-01T09:42:32Z"],["dc.date.issued","2021"],["dc.description.abstract","The Rho guanine nucleotide exchange factor RhoGEF17 was described to reside in adherens junctions (AJ) in endothelial cells (EC) and to play a critical role in the regulation of cell adhesion and barrier function. The purpose of this study was to analyze signal cascades and processes occurring subsequent to AJ disruption induced by RhoGEF17 knockdown. Primary human and immortalized rat EC were used to demonstrate that an adenoviral-mediated knockdown of RhoGEF17 resulted in cell rounding and an impairment in spheroid formation due to an enhanced proteasomal degradation of AJ components. In contrast, β-catenin degradation was impaired, which resulted in an induction of the β-catenin-target genes cyclin D1 and survivin. RhoGEF17 depletion additionally inhibited cell adhesion and sheet migration. The RhoGEF17 knockdown prevented the cells with impeded cell–cell and cell–matrix contacts from apoptosis, which was in line with a reduction in pro-caspase 3 expression and an increase in Akt phosphorylation. Nevertheless, the cells were not able to proliferate as a cell cycle block occurred. In summary, we demonstrate that a loss of RhoGEF17 disturbs cell–cell and cell–substrate interaction in EC. Moreover, it prevents the EC from cell death and blocks cell proliferation. Non-canonical β-catenin signaling and Akt activation could be identified as a potential mechanism."],["dc.description.sponsorship","Deutsche Forschungsgemeinschaft"],["dc.identifier.doi","10.3390/cells10040741"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/85279"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/391"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | C02: RhoGTPasen und ihre Bedeutung für die Last-abhängige Myokardfibrose"],["dc.relation.eissn","2073-4409"],["dc.relation.workinggroup","RG Lutz (G Protein-Coupled Receptor Mediated Signaling)"],["dc.relation.workinggroup","RG Zelarayán-Behrend (Developmental Pharmacology)"],["dc.rights","https://creativecommons.org/licenses/by/4.0/"],["dc.title","RhoGEF17—An Essential Regulator of Endothelial Cell Death and Growth"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI2011Journal Article [["dc.bibliographiccitation.firstpage","461"],["dc.bibliographiccitation.issue","4-5"],["dc.bibliographiccitation.journal","Naunyn-Schmiedeberg s Archives of Pharmacology"],["dc.bibliographiccitation.lastpage","472"],["dc.bibliographiccitation.volume","384"],["dc.contributor.author","Hippe, Hans-Joerg"],["dc.contributor.author","Wolf, Nadine M."],["dc.contributor.author","Abu-Taha, Issam H."],["dc.contributor.author","Lutz, Susanne"],["dc.contributor.author","Le Lay, Soazig"],["dc.contributor.author","Just, Steffen"],["dc.contributor.author","Rottbauer, Wolfgang"],["dc.contributor.author","Katus, Hugo A."],["dc.contributor.author","Wieland, Thomas"],["dc.date.accessioned","2018-11-07T08:51:02Z"],["dc.date.available","2018-11-07T08:51:02Z"],["dc.date.issued","2011"],["dc.description.abstract","Caveolae are flask-shaped invaginations in the plasma membrane that serve to compartmentalize and organize signal transduction processes, including signals mediated by G protein-coupled receptors and heterotrimeric G proteins. Herein we report evidence for a close association of the nucleoside diphosphate kinase B (NDPK B) and caveolin proteins which is required for G protein scaffolding and caveolae formation. A concomitant loss of the proteins NDPK B, caveolin isoforms 1 (Cav1) and 3, and heterotrimeric G proteins occurred when one of these proteins was specifically depleted in zebrafish embryos. Co-immunoprecipitation of Cav1 with the G protein G beta-subunit and NDPK B from zebrafish lysates corroborated the direct association of these proteins. Similarly, in embryonic fibroblasts from the respective knockout (KO) mice, the membrane content of the Cav1, G beta, and NDPK B was found to be mutually dependent on one another. A redistribution of Cav1 and G beta from the caveolae containing fractions of lower density to other membrane compartments with higher density could be detected by means of density gradient fractionation of membranes derived from NDPK A/B KO mouse embryonic fibroblasts (MEFs) and after shRNA-mediated NDPK B knockdown in H10 cardiomyocytes. This redistribution could be visualized by confocal microscopy analysis showing a decrease in the plasma membrane bound Cav1 in NDPK A/B KO cells and vice versa and a decrease in the plasma membrane pool of NDPK B in Cav1 KO cells. Consequently, ultrastructural analysis revealed a reduction of surface caveolae in the NDPK A/B KO cells. To prove that the disturbed subcellular localization of Cav1 in NDPK A/B KO MEFs as well as NDPK B in Cav1 KO MEFs is a result of the loss of NDPK B and Cav1, respectively, we performed rescue experiments. The adenoviral re-expression of NDPK B in NDPK A/B KO MEFs rescued the protein content and the plasma membrane localization of Cav1. The expression of an EGFP-Cav1 fusion protein in Cav1-KO cells induced a restoration of NDPK B expression levels and its appearance at the plasma membrane. We conclude from these findings that NDPK B, heterotrimeric G proteins, and caveolins are mutually dependent on each other for stabile localization and caveolae formation at the plasma membrane. The data point to a disturbed transport of caveolin/G protein/NDPK B complexes from intracellular membrane compartments if one of the components is missing."],["dc.identifier.doi","10.1007/s00210-011-0618-x"],["dc.identifier.isi","000296639000014"],["dc.identifier.pmid","21409430"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/21835"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.relation.issn","0028-1298"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Nucleoside diphosphate kinase B is required for the formation of heterotrimeric G protein containing caveolae"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2010Journal Article [["dc.bibliographiccitation.firstpage","4865"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","The FASEB Journal"],["dc.bibliographiccitation.lastpage","4876"],["dc.bibliographiccitation.volume","24"],["dc.contributor.author","Wuertz, Christina M."],["dc.contributor.author","Lorincz, Akos"],["dc.contributor.author","Vettel, Christiane"],["dc.contributor.author","Thomas, Martin A."],["dc.contributor.author","Wieland, Thomas"],["dc.contributor.author","Lutz, Susanne"],["dc.date.accessioned","2018-11-07T08:36:13Z"],["dc.date.available","2018-11-07T08:36:13Z"],["dc.date.issued","2010"],["dc.description.abstract","The purpose of our study was to investigate the role of endogenous p63RhoGEF in G(q/11)-dependent RhoA activation and signaling in rat aortic smooth muscle cells (RASMCs). Therefore, we studied the expression and subcellular localization in freshly isolated RASMCs and performed loss of function experiments to analyze its contribution to RhoGTPase activation and functional responses such as proliferation and contraction. By this, we could show that p63RhoGEF is endogenously expressed in RASMCs and acts there as the dominant mediator of the fast angiotensin II (ANG II)-dependent but not of the sphingosine-1-phosphate (S1P)-dependent RhoA activation. p63RhoGEF is not an activator of the concomitant Rac1 activation and functions independently of caveolae. The knockdown of endogenous p63RhoGEF significantly reduced the mitogenic response of ANG II, abolished ANG II-induced stress fiber formation and cell elongation in 2-D culture, and impaired the ANG II-driven contraction in a collagen-based 3-D model. In conclusion, our data provide for the first time evidence that p63RhoGEF is an important mediator of ANG II-dependent RhoA activation in RASMCs and therewith a leading actor in the subsequently triggered cellular processes, such as proliferation and contraction.-Wuertz, C. M., Lorincz, A., Vettel, C., Thomas, M. A., Wieland, T., Lutz, S. p63RhoGEF-a key mediator of angiotensin II-dependent signaling and processes in vascular smooth muscle cells. FASEB J. 24, 4865-4876 (2010). www.fasebj.org"],["dc.description.sponsorship","Deutsche Forschungsgemeinschaft [Lu1486/1-1, SFB TR 23 TP B6]"],["dc.identifier.doi","10.1096/fj.10-155499"],["dc.identifier.isi","000284824400026"],["dc.identifier.pmid","20739613"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/6271"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/18258"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Federation Amer Soc Exp Biol"],["dc.relation.issn","0892-6638"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","p63RhoGEF-a key mediator of angiotensin II-dependent signaling and processes in vascular smooth muscle cells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2022Journal Article Research Paper [["dc.bibliographiccitation.artnumber","8"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Basic Research in Cardiology"],["dc.bibliographiccitation.volume","117"],["dc.contributor.author","Levay, Magdolna K."],["dc.contributor.author","Krobert, Kurt A."],["dc.contributor.author","Vogt, Andreas"],["dc.contributor.author","Ahmad, Atif"],["dc.contributor.author","Jungmann, Andreas"],["dc.contributor.author","Neuber, Christiane"],["dc.contributor.author","Pasch, Sebastian"],["dc.contributor.author","Hansen, Arne"],["dc.contributor.author","Müller, Oliver J."],["dc.contributor.author","Lutz, Susanne"],["dc.contributor.author","Wieland, Thomas"],["dc.date.accessioned","2022-04-01T10:01:10Z"],["dc.date.available","2022-04-01T10:01:10Z"],["dc.date.issued","2022"],["dc.description.abstract","Abstract The role and outcome of the muscarinic M 2 acetylcholine receptor (M 2 R) signaling in healthy and diseased cardiomyocytes is still a matter of debate. Here, we report that the long isoform of the regulator of G protein signaling 3 (RGS3L) functions as a switch in the muscarinic signaling, most likely of the M 2 R, in primary cardiomyocytes. High levels of RGS3L, as found in heart failure, redirect the G i -mediated Rac1 activation into a G i -mediated RhoA/ROCK activation. Functionally, this switch resulted in a reduced production of reactive oxygen species (− 50%) in cardiomyocytes and an inotropic response (+ 18%) in transduced engineered heart tissues. Importantly, we could show that an adeno-associated virus 9-mediated overexpression of RGS3L in rats in vivo, increased the contractility of ventricular strips by maximally about twofold. Mechanistically, we demonstrate that this switch is mediated by a complex formation of RGS3L with the GTPase-activating protein p190RhoGAP, which balances the activity of RhoA and Rac1 by altering its substrate preference in cardiomyocytes. Enhancement of this complex formation could open new possibilities in the regulation of the contractility of the diseased heart."],["dc.identifier.doi","10.1007/s00395-022-00915-w"],["dc.identifier.pii","915"],["dc.identifier.pmid","35230541"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/105615"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/440"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-530"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | C02: RhoGTPasen und ihre Bedeutung für die Last-abhängige Myokardfibrose"],["dc.relation.eissn","1435-1803"],["dc.relation.issn","0300-8428"],["dc.relation.workinggroup","RG Lutz (G Protein-Coupled Receptor Mediated Signaling)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","RGS3L allows for an M2 muscarinic receptor-mediated RhoA-dependent inotropy in cardiomyocytes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC