Now showing 1 - 1 of 1
  • 2014Conference Paper
    [["dc.bibliographiccitation.artnumber","9212-26"],["dc.contributor.author","Krenkel, Martin"],["dc.contributor.author","Töpperwien, Mareike"],["dc.contributor.author","Bartels, Matthias"],["dc.contributor.author","Lingor, Paul"],["dc.contributor.author","Schild, Detlev"],["dc.contributor.author","Salditt, Tim"],["dc.contributor.editor","Stock, Stuart R."],["dc.date.accessioned","2017-09-07T11:54:06Z"],["dc.date.available","2017-09-07T11:54:06Z"],["dc.date.issued","2014"],["dc.description.abstract","We use propagation based hard x-ray phase contrast tomography to explore the three dimensional structure of neuronal tissues from the organ down to sub-cellular level, based on combinations of synchrotron radiation and laboratory sources. To this end a laboratory based microfocus tomography setup has been built in which the geometry was optimized for phase contrast imaging and tomography. By utilizing phase retrieval algorithms, quantitative reconstructions can be obtained that enable automatic renderings without edge artifacts. A high brightness liquid metal microfocus x-ray source in combination with a high resolution detector yielding a resolution down to 1.5 μm. To extend the method to nanoscale resolution we use a divergent x-ray waveguide beam geometry at the synchrotron. Thus, the magnification can be easily tuned by placing the sample at different defocus distances. Due to the small Fresnel numbers in this geometry the measured images are of holographic nature which poses a challenge in phase retrieval."],["dc.identifier.doi","10.1117/12.2060390"],["dc.identifier.gro","3145112"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2812"],["dc.language.iso","en"],["dc.notes.intern","Crossref Import"],["dc.notes.status","public"],["dc.publisher","SPIE"],["dc.publisher.place","Bellingham, Washington"],["dc.relation.conference","9th Conference Developments in X-Ray Tomography"],["dc.relation.eventend","2014-08-20"],["dc.relation.eventlocation","San Diego, Calif."],["dc.relation.eventstart","2014-08-18"],["dc.relation.ispartof","Developments in X-Ray Tomography IX"],["dc.relation.issn","0277-786X"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.subject.gro","x-ray imaging"],["dc.subject.gro","biomedical tomography"],["dc.title","X-ray phase contrast tomography from whole organ down to single cells"],["dc.type","conference_paper"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]
    Details DOI