Options
Finger, Markus
Loading...
Preferred name
Finger, Markus
Official Name
Finger, Markus
Alternative Name
Finger, M.
Main Affiliation
Now showing 1 - 10 of 12
2018Journal Article Research Paper [["dc.bibliographiccitation.firstpage","7922"],["dc.bibliographiccitation.issue","25"],["dc.bibliographiccitation.journal","Journal of the American Chemical Society"],["dc.bibliographiccitation.lastpage","7935"],["dc.bibliographiccitation.volume","140"],["dc.contributor.author","Lindley, Brian M."],["dc.contributor.author","van Alten, Richt S."],["dc.contributor.author","Finger, Markus"],["dc.contributor.author","Schendzielorz, Florian S."],["dc.contributor.author","Würtele, Christian"],["dc.contributor.author","Miller, Alexander J. M."],["dc.contributor.author","Siewert, Inke"],["dc.contributor.author","Schneider, Sven"],["dc.date.accessioned","2019-10-28T10:12:34Z"],["dc.date.available","2019-10-28T10:12:34Z"],["dc.date.issued","2018"],["dc.description.abstract","A comprehensive mechanistic study of N2 activation and splitting into terminal nitride ligands upon reduction of the rhenium dichloride complex [ReCl2(PNP)] is presented (PNP- = N(CH2CH2P tBu2)2-). Low-temperature studies using chemical reductants enabled full characterization of the N2-bridged intermediate [{(PNP)ClRe}2(N2)] and kinetic analysis of the N-N bond scission process. Controlled potential electrolysis at room temperature also resulted in formation of the nitride product [Re(N)Cl(PNP)]. This first example of molecular electrochemical N2 splitting into nitride complexes enabled the use of cyclic voltammetry (CV) methods to establish the mechanism of reductive N2 activation to form the N2-bridged intermediate. CV data was acquired under Ar and N2, and with varying chloride concentration, rhenium concentration, and N2 pressure. A series of kinetic models was vetted against the CV data using digital simulations, leading to the assignment of an ECCEC mechanism (where \"E\" is an electrochemical step and \"C\" is a chemical step) for N2 activation that proceeds via initial reduction to ReII, N2 binding, chloride dissociation, and further reduction to ReI before formation of the N2-bridged, dinuclear intermediate by comproportionation with the ReIII precursor. Experimental kinetic data for all individual steps could be obtained. The mechanism is supported by density functional theory computations, which provide further insight into the electronic structure requirements for N2 splitting in the tetragonal frameworks enforced by rigid pincer ligands."],["dc.identifier.doi","10.1021/jacs.8b03755"],["dc.identifier.pmid","29856611"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15622"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/62532"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.eissn","1520-5126"],["dc.relation.issn","0002-7863"],["dc.relation.issn","1520-5126"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject.gro","cellular biophysics"],["dc.title","Mechanism of Chemical and Electrochemical N2 Splitting by a Rhenium Pincer Complex"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2022Journal Article [["dc.bibliographiccitation.firstpage","11581"],["dc.bibliographiccitation.issue","30"],["dc.bibliographiccitation.journal","Inorganic Chemistry"],["dc.bibliographiccitation.lastpage","11591"],["dc.bibliographiccitation.volume","61"],["dc.contributor.author","van Alten, Richt S."],["dc.contributor.author","Wieser, Philipp A."],["dc.contributor.author","Finger, Markus"],["dc.contributor.author","Abbenseth, Josh"],["dc.contributor.author","Demeshko, Serhiy"],["dc.contributor.author","Würtele, Christian"],["dc.contributor.author","Siewert, Inke"],["dc.contributor.author","Schneider, Sven"],["dc.date.accessioned","2022-09-01T09:49:54Z"],["dc.date.available","2022-09-01T09:49:54Z"],["dc.date.issued","2022"],["dc.identifier.doi","10.1021/acs.inorgchem.2c00973"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/113570"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-597"],["dc.relation.eissn","1520-510X"],["dc.relation.issn","0020-1669"],["dc.title","Halide Effects in Reductive Splitting of Dinitrogen with Rhenium Pincer Complexes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2016Journal Article [["dc.bibliographiccitation.firstpage","11417"],["dc.bibliographiccitation.issue","38"],["dc.bibliographiccitation.journal","Angewandte Chemie International Edition"],["dc.bibliographiccitation.lastpage","11420"],["dc.bibliographiccitation.volume","55"],["dc.contributor.author","Schendzielorz, Florian S."],["dc.contributor.author","Finger, Markus"],["dc.contributor.author","Volkmann, Christian"],["dc.contributor.author","Wuertele, Christian"],["dc.contributor.author","Schneider, Sven"],["dc.date.accessioned","2018-11-07T10:08:36Z"],["dc.date.available","2018-11-07T10:08:36Z"],["dc.date.issued","2016"],["dc.description.abstract","Low-valent osmium nitrides are discussed as intermediates in nitrogen fixation schemes. However, rational synthetic routes that lead to isolable examples are currently unknown. Here, the synthesis of the square-planar osmium(IV) nitride [OsN(PNP)] (PNP=N(CH2CH2P(tBu)(2))(2)) is reported upon reversible deprotonation of osmium(VI) hydride [Os(N)H(PNP)](+). The Os-IV complex shows ambiphilic nitride reactivity with SiMe3Br and PMe3, respectively. Importantly, the hydrogenolysis with H-2 gives ammonia and the polyhydride complex [OsH4(HPNP)] in 80% yield. Hence, our results directly demonstrate the role of low-valent osmium nitrides and of heterolytic H-2 activation for ammonia synthesis with H-2 under basic conditions."],["dc.description.sponsorship","European Research Council (ERC) [646747]"],["dc.identifier.doi","10.1002/anie.201604917"],["dc.identifier.isi","000383748900015"],["dc.identifier.pmid","27529412"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14023"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/39493"],["dc.notes.intern","Merged from goescholar"],["dc.notes.intern","In goescholar not merged with http://resolver.sub.uni-goettingen.de/purl?gs-1/15305 but duplicate"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-v C H Verlag Gmbh"],["dc.relation.issn","1521-3773"],["dc.relation.issn","1433-7851"],["dc.rights","Goescholar"],["dc.rights.access","openAccess"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject.ddc","540"],["dc.title","A Terminal Osmium(IV) Nitride: Ammonia Formation and Ambiphilic Reactivity"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","submitted_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2016Journal Article [["dc.bibliographiccitation.firstpage","469"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Inorganic Chemistry Frontiers"],["dc.bibliographiccitation.lastpage","477"],["dc.bibliographiccitation.volume","3"],["dc.contributor.author","Abbenseth, Josh"],["dc.contributor.author","Finger, Markus"],["dc.contributor.author","Würtele, Christian"],["dc.contributor.author","Kasanmascheff, Müge"],["dc.contributor.author","Schneider, Sven"],["dc.date.accessioned","2016-02-15T11:46:27Z"],["dc.date.accessioned","2021-10-27T13:12:29Z"],["dc.date.available","2016-02-15T11:46:27Z"],["dc.date.available","2021-10-27T13:12:29Z"],["dc.date.issued","2016"],["dc.description.abstract","The oxidative coupling of nitride ligands (N3−) to dinitrogen and its microscopic reverse, N2-splitting to nitrides, are important elementary steps in chemical transformations, such as selective ammonia oxidation or nitrogen fixation. Here an experimental and computational evaluation is provided for the homo- and heterocoupling of our previously reported iridium(IV) and iridium(V) nitrides [IrN(PNP)]n (n = 0, +1; PNP = N(CHCHPtBu2)2). All three formal coupling products [(PNP)IrN2Ir(PNP)]n (n = 0–+2) were structurally characterized. While the three coupling reactions are all thermodynamically feasible, homocoupling of [IrN(PNP)]+ is kinetically hindered. The contributing parameters to relative coupling rates are discussed providing qualitative guidelines for the stability of electron rich transition metal nitrides."],["dc.description.sponsorship","European Research Council [646747]"],["dc.identifier.doi","10.1039/c5qi00267b"],["dc.identifier.isi","000374011600004"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/12839"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/91696"],["dc.language.iso","en"],["dc.notes.intern","Migrated from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Royal Soc Chemistry"],["dc.relation","info:eu-repo/grantAgreement/EC/H2020/646747/EU/N2 as Chemical Feedstock – Synthetic Nitrogen Fixation beyond Haber-Bosch/N2FEED"],["dc.relation.issn","2052-1553"],["dc.relation.orgunit","Fakultät für Chemie"],["dc.rights","Goescholar"],["dc.rights.access","openAccess"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject","iridium nitrido complexes; Coupling"],["dc.title","Coupling of terminal iridium nitrido complexes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI WOS2017Journal Article [["dc.bibliographiccitation.firstpage","802"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Organometallics"],["dc.bibliographiccitation.lastpage","811"],["dc.bibliographiccitation.volume","37"],["dc.contributor.author","Abbenseth, Josh"],["dc.contributor.author","Bete, Sarah C."],["dc.contributor.author","Finger, Markus"],["dc.contributor.author","Volkmann, Christian"],["dc.contributor.author","Würtele, Christian"],["dc.contributor.author","Schneider, Sven"],["dc.date.accessioned","2019-07-09T11:51:20Z"],["dc.date.available","2019-07-09T11:51:20Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1021/acs.organomet.7b00707"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16106"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59928"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","info:eu-repo/grantAgreement/EC/H2020/646747/EU//N2FEED"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject.ddc","540"],["dc.title","Four- and Five-Coordinate Osmium(IV) Nitrides and Imides: Circumventing the “Nitrido Wall”"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","submitted_version"],["dspace.entity.type","Publication"]]Details DOI2018Journal Article Research Paper [["dc.bibliographiccitation.firstpage","14482"],["dc.bibliographiccitation.issue","44"],["dc.bibliographiccitation.journal","Angewandte Chemie International Edition"],["dc.bibliographiccitation.lastpage","14487"],["dc.bibliographiccitation.volume","57"],["dc.contributor.author","Schneck, Felix"],["dc.contributor.author","Schendzielorz, Florian S."],["dc.contributor.author","Hatami, Nareh"],["dc.contributor.author","Finger, Markus"],["dc.contributor.author","Würtele, Christian"],["dc.contributor.author","Schneider, Sven"],["dc.date.accessioned","2019-07-09T11:51:20Z"],["dc.date.available","2019-07-09T11:51:20Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1002/anie.201803396"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16108"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59930"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","info:eu-repo/grantAgreement/EC/H2020/646747/EU//N2FEED"],["dc.relation","SFB 1073: Kontrolle von Energiewandlung auf atomaren Skalen"],["dc.relation","SFB 1073 | Topical Area C | C07 Kontrolle Reaktivität hydridischer Photokatalysatoren"],["dc.relation.issn","1433-7851"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject.ddc","540"],["dc.title","Photochemically Driven Reverse Water-Gas Shift at Ambient Conditions mediated by a Nickel Pincer Complex"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2018Journal Article [["dc.bibliographiccitation.firstpage","830"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Angewandte Chemie International Edition"],["dc.bibliographiccitation.lastpage","834"],["dc.bibliographiccitation.volume","58"],["dc.contributor.author","Schendzielorz, Florian"],["dc.contributor.author","Finger, Markus"],["dc.contributor.author","Abbenseth, Josh"],["dc.contributor.author","Würtele, Christian"],["dc.contributor.author","Krewald, Vera"],["dc.contributor.author","Schneider, Sven"],["dc.date.accessioned","2020-01-14T13:35:36Z"],["dc.date.accessioned","2021-10-27T13:12:51Z"],["dc.date.available","2020-01-14T13:35:36Z"],["dc.date.available","2021-10-27T13:12:51Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1002/anie.201812125"],["dc.identifier.doi","10.1002/ange.201812125"],["dc.identifier.eissn","1521-3773"],["dc.identifier.issn","1433-7851"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/17095"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/91728"],["dc.language.iso","en"],["dc.notes.intern","Migrated from goescholar"],["dc.relation","info:eu-repo/grantAgreement/EC/H2020/646747/EU//N2FEED"],["dc.relation.issn","1433-7851"],["dc.relation.orgunit","Fakultät für Chemie"],["dc.rights","Goescholar"],["dc.rights.access","openAccess"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject","N2FEED"],["dc.subject.ddc","540"],["dc.title","Metal-Ligand Cooperative Synthesis of Benzonitrile by Electrochemical Reduction and Photolytic Splitting of Dinitrogen"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.version","submitted_version"],["dspace.entity.type","Publication"]]Details DOI2018Journal Article Research Paper [["dc.bibliographiccitation.artnumber","1161"],["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.lastpage","8"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Schneck, Felix"],["dc.contributor.author","Ahrens, Jennifer"],["dc.contributor.author","Finger, Markus"],["dc.contributor.author","Stückl, Andrea Claudia"],["dc.contributor.author","Würtele, Christian"],["dc.contributor.author","Schwarzer, Dirk"],["dc.contributor.author","Schneider, Sven"],["dc.date.accessioned","2019-07-09T11:45:18Z"],["dc.date.available","2019-07-09T11:45:18Z"],["dc.date.issued","2018"],["dc.description.abstract","Direct hydrogenation of CO2 to CO, the reverse water-gas shift reaction, is an attractive route to CO2 utilization. However, the use of molecular catalysts is impeded by the general reactivity of metal hydrides with CO2. Insertion into M-H bonds results in formates (MO(O)CH), whereas the abnormal insertion to the hydroxycarbonyl isomer (MC(O)OH), which is the key intermediate for CO-selective catalysis, has never been directly observed. We here report that the selectivity of CO2 insertion into a Ni-H bond can be inverted from normal to abnormal insertion upon switching from thermal to photochemical conditions. Mechanistic examination for abnormal insertion indicates photochemical N-H reductive elimination as the pivotal step that leads to an umpolung of the hydride ligand. This study conceptually introduces metal-ligand cooperation for selectivity control in photochemical transformations."],["dc.identifier.doi","10.1038/s41467-018-03239-3"],["dc.identifier.pmid","29563551"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15100"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59204"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","info:eu-repo/grantAgreement/EC/H2020/646747/EU//N2FEED"],["dc.relation","SFB 1073: Kontrolle von Energiewandlung auf atomaren Skalen"],["dc.relation","SFB 1073 | Topical Area C | C07 Kontrolle Reaktivität hydridischer Photokatalysatoren"],["dc.relation.issn","2041-1723"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","540"],["dc.title","The elusive abnormal CO2 insertion enabled by metal-ligand cooperative photochemical selectivity inversion"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2019Journal Article [["dc.bibliographiccitation.firstpage","10275"],["dc.bibliographiccitation.issue","44"],["dc.bibliographiccitation.journal","Chemical Science"],["dc.bibliographiccitation.lastpage","10282"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Schluschaß, Bastian"],["dc.contributor.author","Abbenseth, Josh"],["dc.contributor.author","Demeshko, Serhiy"],["dc.contributor.author","Finger, Markus"],["dc.contributor.author","Franke, Alicja"],["dc.contributor.author","Herwig, Christian"],["dc.contributor.author","Würtele, Christian"],["dc.contributor.author","Ivanovic-Burmazovic, Ivana"],["dc.contributor.author","Limberg, Christian"],["dc.contributor.author","Schneider, Sven"],["dc.contributor.author","Telser, Joshua"],["dc.date.accessioned","2021-06-01T10:50:53Z"],["dc.date.available","2021-06-01T10:50:53Z"],["dc.date.issued","2019"],["dc.description.abstract","An N 2 -bridged ditungsten complex is presented that undergoes N 2 -splitting or hydrogen evolution upon protonation depending on the acid and reaction conditions. Spectroscopic, kinetic and computational results emphasize the impact of hydrogen bonding on the reaction selectivity."],["dc.description.abstract","Mo complexes are currently the most active catalysts for nitrogen fixation under ambient conditions. In comparison, tungsten platforms are scarcely examined. For active catalysts, the control of N 2 vs. proton reduction selectivities remains a difficult task. We here present N 2 splitting using a tungsten pincer platform, which has been proposed as the key reaction for catalytic nitrogen fixation. Starting from [WCl 3 (PNP)] (PNP = N(CH 2 CH 2 P t Bu 2 ) 2 ), the activation of N 2 enabled the isolation of the dinitrogen bridged redox series [(N 2 ){WCl(PNP)} 2 ] 0/+/2+ . Protonation of the neutral complex results either in the formation of a nitride [W(N)Cl( H PNP)] + or H 2 evolution and oxidation of the W 2 N 2 core, respectively, depending on the acid and reaction conditions. Examination of the nitrogen splitting vs. proton reduction selectivity emphasizes the role of hydrogen bonding of the conjugate base with the protonated intermediates and provides guidelines for nitrogen fixation."],["dc.identifier.doi","10.1039/C9SC03779A"],["dc.identifier.eissn","2041-6539"],["dc.identifier.issn","2041-6520"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16963"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/86812"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.notes.intern","Merged from goescholar"],["dc.relation.eissn","2041-6539"],["dc.relation.issn","2041-6520"],["dc.rights","CC BY 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/3.0"],["dc.title","Selectivity of tungsten mediated dinitrogen splitting vs. proton reduction"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2016Journal Article [["dc.bibliographiccitation.firstpage","4786"],["dc.bibliographiccitation.issue","15"],["dc.bibliographiccitation.journal","Angewandte Chemie International Edition"],["dc.bibliographiccitation.lastpage","4789"],["dc.bibliographiccitation.volume","55"],["dc.contributor.author","Klopsch, Isabel"],["dc.contributor.author","Kinauer, Markus"],["dc.contributor.author","Finger, Markus"],["dc.contributor.author","Wuertele, Christian"],["dc.contributor.author","Schneider, Sven"],["dc.date.accessioned","2018-11-07T10:15:40Z"],["dc.date.available","2018-11-07T10:15:40Z"],["dc.date.issued","2016"],["dc.description.abstract","About 20% of the ammonia production is used as the chemical feedstock for nitrogen-containing chemicals. However, while synthetic nitrogen fixation at ambient conditions has had some groundbreaking contributions in recent years, progress for the direct conversion of N-2 into organic products remains limited and catalytic reactions are unknown. Herein, the rhenium-mediated synthesis of acetonitrile using dinitrogen and ethyl triflate is presented. A synthetic cycle in three reaction steps with high individual isolated yields and recovery of the rhenium pincer starting complex is shown. The cycle comprises alkylation of a nitride that arises from N-2 splitting and subsequent imido ligand centered oxidation to nitrile via a 1-azavinylidene (ketimido) intermediate. Different synthetic strategies for intra- and intermolecular imido ligand oxidation and associated metal reduction were evaluated that rely on simple proton, electron, and hydrogen-atom transfer steps."],["dc.description.sponsorship","European Research Council (ERC) [646747]"],["dc.identifier.doi","10.1002/anie.201600790"],["dc.identifier.isi","000373615900030"],["dc.identifier.pmid","26948973"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14025"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/40853"],["dc.notes.intern","Merged from goescholar"],["dc.notes.intern","In goescholar not merged with http://resolver.sub.uni-goettingen.de/purl?gs-1/15304 but duplicate"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-v C H Verlag Gmbh"],["dc.relation.issn","1521-3773"],["dc.relation.issn","1433-7851"],["dc.rights","Goescholar"],["dc.rights.access","openAccess"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject.ddc","540"],["dc.title","Conversion of Dinitrogen into Acetonitrile under Ambient Conditions"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","submitted_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS