Now showing 1 - 3 of 3
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","7922"],["dc.bibliographiccitation.issue","25"],["dc.bibliographiccitation.journal","Journal of the American Chemical Society"],["dc.bibliographiccitation.lastpage","7935"],["dc.bibliographiccitation.volume","140"],["dc.contributor.author","Lindley, Brian M."],["dc.contributor.author","van Alten, Richt S."],["dc.contributor.author","Finger, Markus"],["dc.contributor.author","Schendzielorz, Florian S."],["dc.contributor.author","Würtele, Christian"],["dc.contributor.author","Miller, Alexander J. M."],["dc.contributor.author","Siewert, Inke"],["dc.contributor.author","Schneider, Sven"],["dc.date.accessioned","2019-10-28T10:12:34Z"],["dc.date.available","2019-10-28T10:12:34Z"],["dc.date.issued","2018"],["dc.description.abstract","A comprehensive mechanistic study of N2 activation and splitting into terminal nitride ligands upon reduction of the rhenium dichloride complex [ReCl2(PNP)] is presented (PNP- = N(CH2CH2P tBu2)2-). Low-temperature studies using chemical reductants enabled full characterization of the N2-bridged intermediate [{(PNP)ClRe}2(N2)] and kinetic analysis of the N-N bond scission process. Controlled potential electrolysis at room temperature also resulted in formation of the nitride product [Re(N)Cl(PNP)]. This first example of molecular electrochemical N2 splitting into nitride complexes enabled the use of cyclic voltammetry (CV) methods to establish the mechanism of reductive N2 activation to form the N2-bridged intermediate. CV data was acquired under Ar and N2, and with varying chloride concentration, rhenium concentration, and N2 pressure. A series of kinetic models was vetted against the CV data using digital simulations, leading to the assignment of an ECCEC mechanism (where \"E\" is an electrochemical step and \"C\" is a chemical step) for N2 activation that proceeds via initial reduction to ReII, N2 binding, chloride dissociation, and further reduction to ReI before formation of the N2-bridged, dinuclear intermediate by comproportionation with the ReIII precursor. Experimental kinetic data for all individual steps could be obtained. The mechanism is supported by density functional theory computations, which provide further insight into the electronic structure requirements for N2 splitting in the tetragonal frameworks enforced by rigid pincer ligands."],["dc.identifier.doi","10.1021/jacs.8b03755"],["dc.identifier.pmid","29856611"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15622"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/62532"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.eissn","1520-5126"],["dc.relation.issn","0002-7863"],["dc.relation.issn","1520-5126"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject.gro","cellular biophysics"],["dc.title","Mechanism of Chemical and Electrochemical N2 Splitting by a Rhenium Pincer Complex"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2016Journal Article
    [["dc.bibliographiccitation.firstpage","11417"],["dc.bibliographiccitation.issue","38"],["dc.bibliographiccitation.journal","Angewandte Chemie International Edition"],["dc.bibliographiccitation.lastpage","11420"],["dc.bibliographiccitation.volume","55"],["dc.contributor.author","Schendzielorz, Florian S."],["dc.contributor.author","Finger, Markus"],["dc.contributor.author","Volkmann, Christian"],["dc.contributor.author","Wuertele, Christian"],["dc.contributor.author","Schneider, Sven"],["dc.date.accessioned","2018-11-07T10:08:36Z"],["dc.date.available","2018-11-07T10:08:36Z"],["dc.date.issued","2016"],["dc.description.abstract","Low-valent osmium nitrides are discussed as intermediates in nitrogen fixation schemes. However, rational synthetic routes that lead to isolable examples are currently unknown. Here, the synthesis of the square-planar osmium(IV) nitride [OsN(PNP)] (PNP=N(CH2CH2P(tBu)(2))(2)) is reported upon reversible deprotonation of osmium(VI) hydride [Os(N)H(PNP)](+). The Os-IV complex shows ambiphilic nitride reactivity with SiMe3Br and PMe3, respectively. Importantly, the hydrogenolysis with H-2 gives ammonia and the polyhydride complex [OsH4(HPNP)] in 80% yield. Hence, our results directly demonstrate the role of low-valent osmium nitrides and of heterolytic H-2 activation for ammonia synthesis with H-2 under basic conditions."],["dc.description.sponsorship","European Research Council (ERC) [646747]"],["dc.identifier.doi","10.1002/anie.201604917"],["dc.identifier.isi","000383748900015"],["dc.identifier.pmid","27529412"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14023"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/39493"],["dc.notes.intern","Merged from goescholar"],["dc.notes.intern","In goescholar not merged with http://resolver.sub.uni-goettingen.de/purl?gs-1/15305 but duplicate"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-v C H Verlag Gmbh"],["dc.relation.issn","1521-3773"],["dc.relation.issn","1433-7851"],["dc.rights","Goescholar"],["dc.rights.access","openAccess"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject.ddc","540"],["dc.title","A Terminal Osmium(IV) Nitride: Ammonia Formation and Ambiphilic Reactivity"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","submitted_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","14482"],["dc.bibliographiccitation.issue","44"],["dc.bibliographiccitation.journal","Angewandte Chemie International Edition"],["dc.bibliographiccitation.lastpage","14487"],["dc.bibliographiccitation.volume","57"],["dc.contributor.author","Schneck, Felix"],["dc.contributor.author","Schendzielorz, Florian S."],["dc.contributor.author","Hatami, Nareh"],["dc.contributor.author","Finger, Markus"],["dc.contributor.author","Würtele, Christian"],["dc.contributor.author","Schneider, Sven"],["dc.date.accessioned","2019-07-09T11:51:20Z"],["dc.date.available","2019-07-09T11:51:20Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1002/anie.201803396"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16108"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59930"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","info:eu-repo/grantAgreement/EC/H2020/646747/EU//N2FEED"],["dc.relation","SFB 1073: Kontrolle von Energiewandlung auf atomaren Skalen"],["dc.relation","SFB 1073 | Topical Area C | C07 Kontrolle Reaktivität hydridischer Photokatalysatoren"],["dc.relation.issn","1433-7851"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject.ddc","540"],["dc.title","Photochemically Driven Reverse Water-Gas Shift at Ambient Conditions mediated by a Nickel Pincer Complex"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI