Options
Seidel, Dominik
Loading...
Preferred name
Seidel, Dominik
Official Name
Seidel, Dominik
Alternative Name
Seidel, D.
Main Affiliation
Now showing 1 - 1 of 1
2021Journal Article [["dc.bibliographiccitation.firstpage","4955"],["dc.bibliographiccitation.issue","23"],["dc.bibliographiccitation.journal","Remote Sensing"],["dc.bibliographiccitation.volume","13"],["dc.contributor.affiliation","Uzquiano, Sara; 1Instituto Universitario de Investigación y Gestión Forestal Sostenible—iuFOR, Universidad de Valladolid—INIA, Avda. Madrid s/n, 34004 Palencia, Spain; roberto.smartin@uva.es (R.S.M.); fbravo@pvs.uva.es (F.B.)"],["dc.contributor.affiliation","Barbeito, Ignacio; 3Department of Forest Resources Management, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada; ignacio.barbeito@ubc.ca"],["dc.contributor.affiliation","San Martín, Roberto; 1Instituto Universitario de Investigación y Gestión Forestal Sostenible—iuFOR, Universidad de Valladolid—INIA, Avda. Madrid s/n, 34004 Palencia, Spain; roberto.smartin@uva.es (R.S.M.); fbravo@pvs.uva.es (F.B.)"],["dc.contributor.affiliation","Ehbrecht, Martin; 5Department of Silviculture and Forest Ecology of the Temperate Zones, Faculty of Forest Science, University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany; martin.ehbrecht@forst.uni-goettingen.de"],["dc.contributor.affiliation","Seidel, Dominik; 6Department for Spatial Structures and Digitization of Forests, Faculty of Forest Science, University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany; dseidel@gwdg.de"],["dc.contributor.affiliation","Bravo, Felipe; 1Instituto Universitario de Investigación y Gestión Forestal Sostenible—iuFOR, Universidad de Valladolid—INIA, Avda. Madrid s/n, 34004 Palencia, Spain; roberto.smartin@uva.es (R.S.M.); fbravo@pvs.uva.es (F.B.)"],["dc.contributor.author","Uzquiano, Sara"],["dc.contributor.author","Barbeito, Ignacio"],["dc.contributor.author","San Martín, Roberto"],["dc.contributor.author","Ehbrecht, Martin"],["dc.contributor.author","Seidel, Dominik"],["dc.contributor.author","Bravo, Felipe"],["dc.contributor.editor","Eichhorn, Markus"],["dc.contributor.editor","Yun, Ting"],["dc.date.accessioned","2022-02-01T10:31:51Z"],["dc.date.available","2022-02-01T10:31:51Z"],["dc.date.issued","2021"],["dc.date.updated","2022-02-09T13:20:06Z"],["dc.description.abstract","Mixed forests make up the majority of natural forests, and they are conducive to improving the resilience and resistance of forest ecosystems. Moreover, it is in the crown of the trees where the effect of inter- and intra-specific interaction between them is evident. However, our knowledge of changes in crown morphology caused by density, competition, and mixture of specific species is still limited. Here, we provide insight on stand structural complexity based on the study of four response crown variables (Maximum Crown Width Height, MCWH; Crown Base Height, CBH; Crown Volume, CV; and Crown Projection Area, CPA) derived from multiple terrestrial laser scans. Data were obtained from six permanent plots in Northern Spain comprising of two widespread species across Europe; Scots pine (Pinus sylvestris L.) and sessile oak (Quercus petraea (Matt.) Liebl.). A total of 193 pines and 256 oaks were extracted from the point cloud. Correlation test were conducted (ρ ≥ 0.9) and finally eleven independent variables for each target tree were calculated and categorized into size, density, competition and mixture, which was included as a continuous variable. Linear and non-linear multiple regressions were used to fit models to the four crown variables and the best models were selected according to the lowest AIC Index and biological sense. Our results provide evidence for species plasticity to diverse neighborhoods and show complementarity between pines and oaks in mixtures, where pines have higher MCWH and CBH than oaks but lower CV and CPA, contrary to oaks. The species complementarity in crown variables confirm that mixtures can be used to increase above ground structural diversity."],["dc.description.abstract","Mixed forests make up the majority of natural forests, and they are conducive to improving the resilience and resistance of forest ecosystems. Moreover, it is in the crown of the trees where the effect of inter- and intra-specific interaction between them is evident. However, our knowledge of changes in crown morphology caused by density, competition, and mixture of specific species is still limited. Here, we provide insight on stand structural complexity based on the study of four response crown variables (Maximum Crown Width Height, MCWH; Crown Base Height, CBH; Crown Volume, CV; and Crown Projection Area, CPA) derived from multiple terrestrial laser scans. Data were obtained from six permanent plots in Northern Spain comprising of two widespread species across Europe; Scots pine (Pinus sylvestris L.) and sessile oak (Quercus petraea (Matt.) Liebl.). A total of 193 pines and 256 oaks were extracted from the point cloud. Correlation test were conducted (ρ ≥ 0.9) and finally eleven independent variables for each target tree were calculated and categorized into size, density, competition and mixture, which was included as a continuous variable. Linear and non-linear multiple regressions were used to fit models to the four crown variables and the best models were selected according to the lowest AIC Index and biological sense. Our results provide evidence for species plasticity to diverse neighborhoods and show complementarity between pines and oaks in mixtures, where pines have higher MCWH and CBH than oaks but lower CV and CPA, contrary to oaks. The species complementarity in crown variables confirm that mixtures can be used to increase above ground structural diversity."],["dc.identifier.doi","10.3390/rs13234955"],["dc.identifier.eissn","2072-4292"],["dc.identifier.pii","rs13234955"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/98962"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-517"],["dc.publisher","MDPI"],["dc.relation.eissn","2072-4292"],["dc.rights","Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/)."],["dc.title","Quantifying Crown Morphology of Mixed Pine-Oak Forests Using Terrestrial Laser Scanning"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI