Now showing 1 - 2 of 2
  • 2007Journal Article
    [["dc.bibliographiccitation.firstpage","779"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Algebraic & Geometric Topology"],["dc.bibliographiccitation.lastpage","784"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Schick, Thomas"],["dc.contributor.author","Thom, Andreas"],["dc.date.accessioned","2017-09-07T11:47:12Z"],["dc.date.available","2017-09-07T11:47:12Z"],["dc.date.issued","2007"],["dc.description.abstract","We give a counterexample to a conjecture of D H Gottlieb and prove a strengthened version of it. The conjecture says that a map from a finite CW–complex X to an aspherical CW–complex Y with non-zero Euler characteristic can have non-trivial degree (suitably defined) only if the centralizer of the image of the fundamental group of X is trivial. As a corollary we show that in the above situation all components of non-zero degree maps in the space of maps from X to Y are contractible. We use L 2 –Betti numbers and homological algebra over von Neumann algebras to prove the modified conjecture."],["dc.identifier.doi","10.2140/agt.2007.7.779"],["dc.identifier.gro","3146672"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4462"],["dc.language.iso","en"],["dc.notes.intern","mathe"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.relation.issn","1472-2747"],["dc.title","On a conjecture of Gottlieb"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2008Book Chapter
    [["dc.bibliographiccitation.firstpage","227"],["dc.bibliographiccitation.lastpage","347"],["dc.contributor.author","Bunke, Ulrich"],["dc.contributor.author","Schick, Thomas"],["dc.contributor.author","Spitzweck, Markus"],["dc.contributor.author","Thom, Andreas"],["dc.contributor.editor","Cortiñas, Guillermo"],["dc.contributor.editor","Cuntz, Joachim"],["dc.contributor.editor","Karoubi, Max"],["dc.contributor.editor","Nest, Ryszard"],["dc.contributor.editor","Weibel, Charles A."],["dc.date.accessioned","2017-09-07T11:43:06Z"],["dc.date.available","2017-09-07T11:43:06Z"],["dc.date.issued","2008"],["dc.description.abstract","We extend Pontrjagin duality from topological abelian groups to certain locally compact group stacks. To this end we develop a sheaf theory on the big site of topological spaces S in order to prove that the sheaves ExtiShAbS(G,T), i = 1, 2, vanish, where G is the sheaf represented by a locally compact abelian group and T is the circle. As an application of the theory we interpret topological T-duality of principal Tn-bundles in terms of Pontrjagin duality of abelian group stacks."],["dc.identifier.doi","10.4171/060-1/10"],["dc.identifier.gro","3146659"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4447"],["dc.language.iso","en"],["dc.notes.intern","mathe"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.publisher","European Mathematical Society"],["dc.publisher.place","Zürich"],["dc.relation.eisbn","978-3-03719-560-4"],["dc.relation.isbn","978-3-03719-060-9"],["dc.relation.ispartof","$K$-theory and noncommutative geometry"],["dc.title","Duality for topological abelian group stacks and ehBduality"],["dc.type","book_chapter"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]
    Details DOI