Options
Thom, Andreas
Loading...
Preferred name
Thom, Andreas
Official Name
Thom, Andreas
Alternative Name
Thom, A.
ORCID
Now showing 1 - 1 of 1
2009Journal Article [["dc.bibliographiccitation.firstpage","271"],["dc.bibliographiccitation.issue","5-6"],["dc.bibliographiccitation.journal","Comptes Rendus Mathematique"],["dc.bibliographiccitation.lastpage","276"],["dc.bibliographiccitation.volume","347"],["dc.contributor.author","Collins, Benoit"],["dc.contributor.author","Haertel, Johannes"],["dc.contributor.author","Thom, Andreas"],["dc.date.accessioned","2018-11-07T08:31:55Z"],["dc.date.available","2018-11-07T08:31:55Z"],["dc.date.issued","2009"],["dc.description.abstract","We compute the Hochschild homology of the free orthogonal quantum group A(0)(n). We show that it satisfies Poincare duality and should be considered to be a 3-dimensional object. We then use recent results of R. Vergnioux to derive results about the l(2)-homology of A(0)(n) and estimates on the free entropy dimension of its set of generators. In particular, we show that the l(2) Betti-numbers of A(0)(n) all vanish and that the free entropy dimension is less than 1. To cite this article: B. Collins et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009). (C) 2009 Academie des sciences. Published by Elsevier Masson SAS. All rights, reserved."],["dc.description.sponsorship","NSERC; ANR; JSPS; DFG [534, 1493]; CRC"],["dc.identifier.doi","10.1016/j.crma.2009.01.021"],["dc.identifier.isi","000264581300011"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/17226"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Elsevier France-editions Scientifiques Medicales Elsevier"],["dc.relation.issn","1631-073X"],["dc.title","Homology of free quantum groups"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI WOS
1 results