Now showing 1 - 6 of 6
  • 2022Journal Article
    [["dc.bibliographiccitation.artnumber","27"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Letters in Mathematical Physics"],["dc.bibliographiccitation.volume","112"],["dc.contributor.author","Buchholz, Detlev"],["dc.contributor.author","Ciolli, Fabio"],["dc.contributor.author","Ruzzi, Giuseppe"],["dc.contributor.author","Vasselli, Ezio"],["dc.date.accessioned","2022-04-01T10:01:03Z"],["dc.date.available","2022-04-01T10:01:03Z"],["dc.date.issued","2022"],["dc.description.abstract","Abstract A universal C -algebra of gauge invariant operators is presented, describing the electromagnetic field as well as operations creating pairs of static electric charges having opposite signs. Making use of Gauss’ law, it is shown that the string-localized operators, which necessarily connect the charges, induce outer automorphisms of the algebra of the electromagnetic field. Thus they carry additional degrees of freedom which cannot be created by the field. It reveals the fact that gauge invariant operators encode information about the presence of non-observable gauge fields underlying the theory. Using the Gupta-Bleuler formalism, concrete implementations of the outer automorphisms by exponential functions of the gauge fields are presented. These fields also appear in unitary operators inducing the time translations in the resulting representations of the universal algebra."],["dc.identifier.doi","10.1007/s11005-022-01515-4"],["dc.identifier.pii","1515"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/105590"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-530"],["dc.relation.eissn","1573-0530"],["dc.relation.issn","0377-9017"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","The universal algebra of the electromagnetic field III. Static charges and emergence of gauge fields"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2018Journal Article
    [["dc.bibliographiccitation.firstpage","829"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Letters in Mathematical Physics"],["dc.bibliographiccitation.lastpage","842"],["dc.bibliographiccitation.volume","109"],["dc.contributor.author","Buchholz, Detlev"],["dc.contributor.author","Ciolli, Fabio"],["dc.contributor.author","Ruzzi, Giuseppe"],["dc.contributor.author","Vasselli, Ezio"],["dc.date.accessioned","2019-08-02T06:21:10Z"],["dc.date.available","2019-08-02T06:21:10Z"],["dc.date.issued","2018"],["dc.description.abstract","Linking numbers appear in local quantum field theory in the presence of tensor fields, which are closed two-forms on Minkowski space. Given any pair of such fields, it is shown that the commutator of the corresponding intrinsic (gauge-invariant) vector potentials, integrated about spacelike separated, spatial loops, are elements of the center of the algebra of all local fields. Moreover, these commutators are proportional to the linking numbers of the underlying loops. If the commutators are different from zero, the underlying two-forms are not exact (i.e. there do not exist local vector potentials for them). The theory then necessarily contains massless particles. A prominent example of this kind, due to J.E. Roberts, is given by the free electromagnetic field and its Hodge dual. Further examples with more complex mass spectrum are presented in this article."],["dc.identifier.doi","10.1007/s11005-018-1136-2"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/62261"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation.issn","0377-9017"],["dc.relation.issn","1573-0530"],["dc.title","Linking numbers in local quantum field theory"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2017Journal Article
    [["dc.bibliographiccitation.firstpage","201"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Letters in Mathematical Physics"],["dc.bibliographiccitation.lastpage","222"],["dc.bibliographiccitation.volume","107"],["dc.contributor.author","Buchholz, Detlev"],["dc.contributor.author","Ciolli, Fabio"],["dc.contributor.author","Ruzzi, Giuseppe"],["dc.contributor.author","Vasselli, Ezio"],["dc.date.accessioned","2018-11-07T10:28:07Z"],["dc.date.available","2018-11-07T10:28:07Z"],["dc.date.issued","2017"],["dc.description.abstract","Conditions for the appearance of topological charges are studied in the framework of the universal C -algebra of the electromagnetic field, which is represented in any theory describing electromagnetism. It is shown that non-trivial topological charges, described by pairs of fields localised in certain topologically non-trivial spacelike separated regions, can appear in regular representations of the algebra only if the fields depend non-linearly on the mollifying test functions. On the other hand, examples of regular vacuum representations with non-trivial topological charges are constructed, where the underlying field still satisfies a weakened form of \"spacelike linearity\". Such representations also appear in the presence of electric currents. The status of topological charges in theories with several types of electromagnetic fields, which appear in the short distance (scaling) limit of asymptotically free non-abelian gauge theories, is also briefly discussed."],["dc.identifier.doi","10.1007/s11005-016-0931-x"],["dc.identifier.isi","000394029600001"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/43350"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Springer"],["dc.relation.issn","1573-0530"],["dc.relation.issn","0377-9017"],["dc.title","The universal C -algebra of the electromagnetic field II. Topological charges and spacelike linear fields"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2019Journal Article
    [["dc.bibliographiccitation.firstpage","2601"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","Letters in Mathematical Physics"],["dc.bibliographiccitation.lastpage","2610"],["dc.bibliographiccitation.volume","109"],["dc.contributor.author","Buchholz, Detlev"],["dc.contributor.author","Ciolli, Fabio"],["dc.contributor.author","Ruzzi, Giuseppe"],["dc.contributor.author","Vasselli, Ezio"],["dc.date.accessioned","2020-12-10T14:11:43Z"],["dc.date.available","2020-12-10T14:11:43Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1007/s11005-019-01203-w"],["dc.identifier.eissn","1573-0530"],["dc.identifier.issn","0377-9017"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/71176"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","On string-localized potentials and gauge fields"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2016Journal Article
    [["dc.bibliographiccitation.firstpage","269"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Letters in Mathematical Physics"],["dc.bibliographiccitation.lastpage","285"],["dc.bibliographiccitation.volume","106"],["dc.contributor.author","Buchholz, Detlev"],["dc.contributor.author","Ciolli, Fabio"],["dc.contributor.author","Ruzzi, Giuseppe"],["dc.contributor.author","Vasselli, Ezio"],["dc.date.accessioned","2018-11-07T10:18:58Z"],["dc.date.available","2018-11-07T10:18:58Z"],["dc.date.issued","2016"],["dc.description.abstract","A universal C -algebra of the electromagnetic field is constructed. It is represented in any quantum field theory which incorporates electromagnetism and expresses basic features of the field such as Maxwell's equations, Poincar, covariance and Einstein causality. Moreover, topological properties of the field resulting from Maxwell's equations are encoded in the algebra, leading to commutation relations with values in its center. The representation theory of the algebra is discussed with focus on vacuum representations, fixing the dynamics of the field."],["dc.identifier.doi","10.1007/s11005-015-0801-y"],["dc.identifier.isi","000368734500006"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/41561"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.relation.issn","1573-0530"],["dc.relation.issn","0377-9017"],["dc.title","The Universal C -Algebra of the Electromagnetic Field"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2016Journal Article
    [["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Letters in Mathematical Physics"],["dc.bibliographiccitation.volume","106"],["dc.contributor.author","Buchholz, Detlev"],["dc.contributor.author","Ciolli, Fabio"],["dc.contributor.author","Ruzzi, Giuseppe"],["dc.contributor.author","Vasselli, Ezio"],["dc.date.accessioned","2018-11-07T10:18:58Z"],["dc.date.available","2018-11-07T10:18:58Z"],["dc.date.issued","2016"],["dc.format.extent","287"],["dc.identifier.doi","10.1007/s11005-015-0815-5"],["dc.identifier.isi","000368734500007"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/41562"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.relation.issn","1573-0530"],["dc.relation.issn","0377-9017"],["dc.title","The Universal C -Algebra of the Electromagnetic Field (vol 106, pg 269, 2016)"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI WOS