Now showing 1 - 10 of 17
  • 2022Journal Article
    [["dc.bibliographiccitation.firstpage","1072"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Nature Methods"],["dc.bibliographiccitation.lastpage","1075"],["dc.bibliographiccitation.volume","19"],["dc.contributor.author","Ostersehlt, Lynn M."],["dc.contributor.author","Jans, Daniel C."],["dc.contributor.author","Wittek, Anna"],["dc.contributor.author","Keller-Findeisen, Jan"],["dc.contributor.author","Inamdar, Kaushik"],["dc.contributor.author","Sahl, Steffen J."],["dc.contributor.author","Hell, Stefan W."],["dc.contributor.author","Jakobs, Stefan"],["dc.date.accessioned","2022-10-04T10:21:07Z"],["dc.date.available","2022-10-04T10:21:07Z"],["dc.date.issued","2022"],["dc.description.abstract","Abstract\n MINimal fluorescence photon FLUXes (MINFLUX) nanoscopy, providing photon-efficient fluorophore localizations, has brought about three-dimensional resolution at nanometer scales. However, by using an intrinsic on–off switching process for single fluorophore separation, initial MINFLUX implementations have been limited to two color channels. Here we show that MINFLUX can be effectively combined with sequentially multiplexed DNA-based labeling (DNA-PAINT), expanding MINFLUX nanoscopy to multiple molecular targets. Our method is exemplified with three-color recordings of mitochondria in human cells."],["dc.identifier.doi","10.1038/s41592-022-01577-1"],["dc.identifier.pii","1577"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/114334"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-600"],["dc.relation.eissn","1548-7105"],["dc.relation.issn","1548-7091"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","DNA-PAINT MINFLUX nanoscopy"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2007Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","L67"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Biophysical Journal"],["dc.bibliographiccitation.lastpage","L69"],["dc.bibliographiccitation.volume","92"],["dc.contributor.author","Donnert, Gerald"],["dc.contributor.author","Keller, Jan"],["dc.contributor.author","Wurm, Christian Andreas"],["dc.contributor.author","Rizzoli, Silvio"],["dc.contributor.author","Westphal, Volker"],["dc.contributor.author","Schoenle, Andreas"],["dc.contributor.author","Jahn, Reinhard"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Eggeling, Christian"],["dc.contributor.author","Hell, Stefan"],["dc.date.accessioned","2017-09-07T11:49:49Z"],["dc.date.available","2017-09-07T11:49:49Z"],["dc.date.issued","2007"],["dc.description.abstract","We demonstrate two-color fluorescence microscopy with nanoscale spatial resolution by applying stimulated emission depletion on fluorophores differing in their absorption and emission spectra. Green- and red-emitting fluorophores are selectively excited and quenched using dedicated beam pairs. The stimulated emission depletion beams deliver a lateral resolution of < 30 nm and 65 nm for the green and the red color channel, respectively. The similar to 5 nm alignment accuracy of the two images establishes the precision with which differently labeled proteins are correlated in space. Colocalized nanoscopy is demonstrated with endosomal protein patterns and by resolving nanoclusters of a mitochondrial outer membrane protein, Tom20, in relation with the F(1)F(0)ATP synthase. The joint improvement of resolution and colocalization demonstrates the emerging potential of far-field fluorescence nanoscopy to study the spatial organization of macromolecules in cells."],["dc.identifier.doi","10.1529/biophysj.107.104497"],["dc.identifier.gro","3143514"],["dc.identifier.isi","000245164000003"],["dc.identifier.pmid","17307826"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1037"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0006-3495"],["dc.title","Two-color far-field fluorescence nanoscopy"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2011Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","209"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nano Letters"],["dc.bibliographiccitation.lastpage","213"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Engelhardt, Johann"],["dc.contributor.author","Keller, Jan"],["dc.contributor.author","Hoyer, Patrick"],["dc.contributor.author","Reuss, Matthias"],["dc.contributor.author","Staudt, Thorsten"],["dc.contributor.author","Hell, Stefan"],["dc.date.accessioned","2017-09-07T11:45:07Z"],["dc.date.available","2017-09-07T11:45:07Z"],["dc.date.issued","2011"],["dc.description.abstract","We investigate the cooperative effect of molecular tilt and defocus on fluorophore localization by centroid calculation in far-held superresolution microscopy based on stochastic single molecule switching, If tilt angle and defocus are unknown, the localization contains systematic errors up to about +/-125 nm. When imaging rotation-impaired fluorophores of unknown random orientation, the average localization accuracy in three-dimensional samples is typically limited to about +/-32 nm, restricting the attainable resolution accordingly."],["dc.identifier.doi","10.1021/nl103472b"],["dc.identifier.gro","3142806"],["dc.identifier.isi","000286029400035"],["dc.identifier.pmid","21133355"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/251"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10 / Funder: Deutsche Forschungsgemeinschaft"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1530-6984"],["dc.title","Molecular Orientation Affects Localization Accuracy in Superresolution Far-Field Fluorescence Microscopy"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2008Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1309"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Nano Letters"],["dc.bibliographiccitation.lastpage","1313"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Harke, Benjamin"],["dc.contributor.author","Ullal, Chaitanya K."],["dc.contributor.author","Keller, Jan"],["dc.contributor.author","Hell, Stefan"],["dc.date.accessioned","2017-09-07T11:48:44Z"],["dc.date.available","2017-09-07T11:48:44Z"],["dc.date.issued","2008"],["dc.description.abstract","We demonstrate the direct three-dimensional imaging of densely packed colloidal nanostructures using stimulated emission depletion microscopy. A combination of two de-excitation patterns yields a resolution of 43 nm in the lateral and 125 nm in the axial direction and an effective focal volume that is by 126-fold smaller than that of a corresponding confocal microscope. The mapping of a model system of spheres organized by confined convective assembly unambiguously identified face-centered cubic, hexagonal close-packed, random hexagonal close-packed, and body-centered cubic structures."],["dc.identifier.doi","10.1021/nl073164n"],["dc.identifier.gro","3143310"],["dc.identifier.isi","000255906400008"],["dc.identifier.pmid","18166070"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/810"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1530-6984"],["dc.title","Three-dimensional nanoscopy of colloidal crystals"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","E8047"],["dc.bibliographiccitation.issue","34"],["dc.bibliographiccitation.journal","Proceedings of the National Academy of Sciences of the United States of America"],["dc.bibliographiccitation.lastpage","E8056"],["dc.bibliographiccitation.volume","115"],["dc.contributor.author","Masch, Jennifer-Magdalena"],["dc.contributor.author","Steffens, Heinz"],["dc.contributor.author","Fischer, Joachim"],["dc.contributor.author","Engelhardt, Johann"],["dc.contributor.author","Hubrich, Jasmine"],["dc.contributor.author","Keller-Findeisen, Jan"],["dc.contributor.author","D'Este, Elisa"],["dc.contributor.author","Urban, Nicolai T."],["dc.contributor.author","Grant, Seth G. N."],["dc.contributor.author","Sahl, Steffen J."],["dc.contributor.author","Kamin, Dirk"],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2018-11-16T10:48:20Z"],["dc.date.accessioned","2021-10-27T13:21:10Z"],["dc.date.available","2018-11-16T10:48:20Z"],["dc.date.available","2021-10-27T13:21:10Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1073/pnas.1807104115"],["dc.identifier.pmid","30082388"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15631"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/91999"],["dc.identifier.url","https://sfb1286.uni-goettingen.de/literature/publications/37"],["dc.language.iso","en"],["dc.notes.intern","Migrated from goescholar"],["dc.relation","SFB 1286: Quantitative Synaptologie"],["dc.relation","SFB 1286 | A07: Der Aufbau des synaptischen Cytoskeletts"],["dc.relation.orgunit","Universitätsmedizin Göttingen"],["dc.relation.workinggroup","RG D’Este"],["dc.relation.workinggroup","RG Hell"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Robust nanoscopy of a synaptic protein in living mice by organic-fluorophore labeling"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","9853"],["dc.bibliographiccitation.issue","20"],["dc.bibliographiccitation.journal","Proceedings of the National Academy of Sciences"],["dc.bibliographiccitation.lastpage","9858"],["dc.bibliographiccitation.volume","116"],["dc.contributor.author","Stoldt, Stefan"],["dc.contributor.author","Stephan, Till"],["dc.contributor.author","Jans, Daniel C."],["dc.contributor.author","Brüser, Christian"],["dc.contributor.author","Lange, Felix"],["dc.contributor.author","Keller-Findeisen, Jan"],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Hell, Stefan W."],["dc.contributor.author","Jakobs, Stefan"],["dc.date.accessioned","2020-12-10T18:12:52Z"],["dc.date.available","2020-12-10T18:12:52Z"],["dc.date.issued","2019"],["dc.description.abstract","Mitochondria are tubular double-membrane organelles essential for eukaryotic life. They form extended networks and exhibit an intricate inner membrane architecture. The MICOS (mitochondrial contact site and cristae organizing system) complex, crucial for proper architecture of the mitochondrial inner membrane, is localized primarily at crista junctions. Harnessing superresolution fluorescence microscopy, we demonstrate that Mic60, a subunit of the MICOS complex, as well as several of its interaction partners are arranged into intricate patterns in human and yeast mitochondria, suggesting an ordered distribution of the crista junctions. We show that Mic60 forms clusters that are preferentially localized in the inner membrane at two opposing sides of the mitochondrial tubules so that they form extended opposing distribution bands. These Mic60 distribution bands can be twisted, resulting in a helical arrangement. Focused ion beam milling-scanning electron microscopy showed that in yeast the twisting of the opposing distribution bands is echoed by the folding of the inner membrane. We show that establishment of the Mic60 distribution bands is largely independent of the cristae morphology. We suggest that Mic60 is part of an extended multiprotein interaction network that scaffolds mitochondria."],["dc.identifier.doi","10.1073/pnas.1820364116"],["dc.identifier.pmid","31028145"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/74522"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/66"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P01: Untersuchung der Unterschiede in der Zusammensetzung, Funktion und Position von individuellen MICOS Komplexen in einzelnen Säugerzellen"],["dc.relation.workinggroup","RG Jakobs (Structure and Dynamics of Mitochondria)"],["dc.rights","CC BY-NC-ND 4.0"],["dc.title","Mic60 exhibits a coordinated clustered distribution along and across yeast and mammalian mitochondria"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2022Journal Article
    [["dc.bibliographiccitation.artnumber","e2201861119"],["dc.bibliographiccitation.issue","29"],["dc.bibliographiccitation.journal","Proceedings of the National Academy of Sciences"],["dc.bibliographiccitation.volume","119"],["dc.contributor.author","Mihaila, Tiberiu S."],["dc.contributor.author","Bäte, Carina"],["dc.contributor.author","Ostersehlt, Lynn M."],["dc.contributor.author","Pape, Jasmin K."],["dc.contributor.author","Keller-Findeisen, Jan"],["dc.contributor.author","Sahl, Steffen J."],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2022-09-01T09:50:23Z"],["dc.date.available","2022-09-01T09:50:23Z"],["dc.date.issued","2022"],["dc.description.abstract","With few-nanometer resolution recently achieved by a new generation of fluorescence nanoscopes (MINFLUX and MINSTED), the size of the tags used to label proteins will increasingly limit the ability to dissect nanoscopic biological structures. Bioorthogonal (click) chemical groups are powerful tools for the specific detection of biomolecules. Through the introduction of an engineered aminoacyl–tRNA synthetase/tRNA pair (tRNA: transfer ribonucleic acid), genetic code expansion allows for the site-specific introduction of amino acids with “clickable” side chains into proteins of interest. Well-defined label positions and the subnanometer scale of the protein modification provide unique advantages over other labeling approaches for imaging at molecular-scale resolution. We report that, by pairing a new N-terminally optimized pyrrolysyl–tRNA synthetase (chPylRS\n 2020\n ) with a previously engineered orthogonal tRNA, clickable amino acids are incorporated with improved efficiency into bacteria and into mammalian cells. The resulting enhanced genetic code expansion machinery was used to label β-actin in U2OS cell filopodia for MINFLUX imaging with minimal separation of fluorophores from the protein backbone. Selected data were found to be consistent with previously reported high-resolution information from cryoelectron tomography about the cross-sectional filament bundling architecture. Our study underscores the need for further improvements to the degree of labeling with minimal-offset methods in order to fully exploit molecular-scale optical three-dimensional resolution."],["dc.description.sponsorship"," Fulbright Association 100010629"],["dc.identifier.doi","10.1073/pnas.2201861119"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/113693"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-597"],["dc.relation.eissn","1091-6490"],["dc.relation.issn","0027-8424"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-nd/4.0/"],["dc.title","Enhanced incorporation of subnanometer tags into cellular proteins for fluorescence nanoscopy via optimized genetic code expansion"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2022Journal Article
    [["dc.bibliographiccitation.journal","Nature Biotechnology"],["dc.contributor.author","Weber, Michael"],["dc.contributor.author","von der Emde, Henrik"],["dc.contributor.author","Leutenegger, Marcel"],["dc.contributor.author","Gunkel, Philip"],["dc.contributor.author","Sambandan, Sivakumar"],["dc.contributor.author","Khan, Taukeer A."],["dc.contributor.author","Keller-Findeisen, Jan"],["dc.contributor.author","Cordes, Volker C."],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2022-12-01T08:30:53Z"],["dc.date.available","2022-12-01T08:30:53Z"],["dc.date.issued","2022"],["dc.description.abstract","Abstract\n \n Super-resolution techniques have achieved localization precisions in the nanometer regime. Here we report all-optical, room temperature localization of fluorophores with precision in the Ångström range. We built on the concept of MINSTED nanoscopy where precision is increased by encircling the fluorophore with the low-intensity central region of a stimulated emission depletion (STED) donut beam while constantly increasing the absolute donut power. By blue-shifting the STED beam and separating fluorophores by on/off switching, individual fluorophores bound to a DNA strand are localized with\n σ\n  = 4.7 Å, corresponding to a fraction of the fluorophore size, with only 2,000 detected photons. MINSTED fluorescence nanoscopy with single-digit nanometer resolution is exemplified by imaging nuclear pore complexes and the distribution of nuclear lamin in mammalian cells labeled by transient DNA hybridization. Because our experiments yield a localization precision\n σ\n  = 2.3 Å, estimated for 10,000 detected photons, we anticipate that MINSTED will open up new areas of application in the study of macromolecular complexes in cells."],["dc.identifier.doi","10.1038/s41587-022-01519-4"],["dc.identifier.pii","1519"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/118008"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-621"],["dc.relation.eissn","1546-1696"],["dc.relation.issn","1087-0156"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","MINSTED nanoscopy enters the Ångström localization range"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2006Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","106"],["dc.bibliographiccitation.journal","New Journal of Physics"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Willig, Katrin I."],["dc.contributor.author","Keller, Jan"],["dc.contributor.author","Bossi, Mariano L."],["dc.contributor.author","Hell, Stefan"],["dc.date.accessioned","2017-09-07T11:52:41Z"],["dc.date.available","2017-09-07T11:52:41Z"],["dc.date.issued","2006"],["dc.description.abstract","We demonstrate the ability of stimulated emission depletion ( STED) microscopy, a far-field fluorescence imaging technique with diffraction-unlimited resolution, to reveal the spatial order of fluorescent nanoparticles. Unlike its confocal counterpart, here STED microscopy resolves the arrangements of densely packed 40 nm beads, supramolecular aggregates in a cell membrane, and colloidal nanoparticles. Both raw and linearly deconvolved data disclose unprecedented details of both biological and non-biological nanopatterns."],["dc.identifier.doi","10.1088/1367-2630/8/6/106"],["dc.identifier.gro","3143674"],["dc.identifier.isi","000238472100001"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1214"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1367-2630"],["dc.title","STED microscopy resolves nanoparticle assemblies"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2022Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","603"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Nature Methods"],["dc.bibliographiccitation.lastpage","612"],["dc.bibliographiccitation.volume","19"],["dc.contributor.author","Bates, Mark"],["dc.contributor.author","Keller-Findeisen, Jan"],["dc.contributor.author","Przybylski, Adrian"],["dc.contributor.author","Hüper, Andreas"],["dc.contributor.author","Stephan, Till"],["dc.contributor.author","Ilgen, Peter"],["dc.contributor.author","Cereceda Delgado, Angel R."],["dc.contributor.author","D’Este, Elisa"],["dc.contributor.author","Egner, Alexander"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2022-06-01T09:39:10Z"],["dc.date.available","2022-06-01T09:39:10Z"],["dc.date.issued","2022"],["dc.description.abstract","Abstract Coherent fluorescence imaging with two objective lenses (4Pi detection) enables single-molecule localization microscopy with sub-10 nm spatial resolution in three dimensions. Despite its outstanding sensitivity, wider application of this technique has been hindered by complex instrumentation and the challenging nature of the data analysis. Here we report the development of a 4Pi-STORM microscope, which obtains optimal resolution and accuracy by modeling the 4Pi point spread function (PSF) dynamically while also using a simpler optical design. Dynamic spline PSF models incorporate fluctuations in the modulation phase of the experimentally determined PSF, capturing the temporal evolution of the optical system. Our method reaches the theoretical limits for precision and minimizes phase-wrapping artifacts by making full use of the information content of the data. 4Pi-STORM achieves a near-isotropic three-dimensional localization precision of 2–3 nm, and we demonstrate its capabilities by investigating protein and nucleic acid organization in primary neurons and mammalian mitochondria."],["dc.description.sponsorship"," European Molecular Biology Organization"],["dc.description.sponsorship"," Max-Planck-Gesellschaft"],["dc.description.sponsorship"," Deutsche Forschungsgemeinschaft"],["dc.identifier.doi","10.1038/s41592-022-01465-8"],["dc.identifier.pii","1465"],["dc.identifier.pmid","35577958"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/108403"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/175"],["dc.identifier.url","https://sfb1286.uni-goettingen.de/literature/publications/166"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-572"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P01: Untersuchung der Unterschiede in der Zusammensetzung, Funktion und Position von individuellen MICOS Komplexen in einzelnen Säugerzellen"],["dc.relation","SFB 1286: Quantitative Synaptologie"],["dc.relation","SFB 1286 | A07: Der Aufbau des synaptischen Cytoskeletts"],["dc.relation.eissn","1548-7105"],["dc.relation.issn","1548-7091"],["dc.relation.workinggroup","RG Jakobs (Structure and Dynamics of Mitochondria)"],["dc.relation.workinggroup","RG Hell"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Optimal precision and accuracy in 4Pi-STORM using dynamic spline PSF models"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC