Now showing 1 - 9 of 9
  • 2022Journal Article
    [["dc.bibliographiccitation.firstpage","1072"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Nature Methods"],["dc.bibliographiccitation.lastpage","1075"],["dc.bibliographiccitation.volume","19"],["dc.contributor.author","Ostersehlt, Lynn M."],["dc.contributor.author","Jans, Daniel C."],["dc.contributor.author","Wittek, Anna"],["dc.contributor.author","Keller-Findeisen, Jan"],["dc.contributor.author","Inamdar, Kaushik"],["dc.contributor.author","Sahl, Steffen J."],["dc.contributor.author","Hell, Stefan W."],["dc.contributor.author","Jakobs, Stefan"],["dc.date.accessioned","2022-10-04T10:21:07Z"],["dc.date.available","2022-10-04T10:21:07Z"],["dc.date.issued","2022"],["dc.description.abstract","Abstract\n MINimal fluorescence photon FLUXes (MINFLUX) nanoscopy, providing photon-efficient fluorophore localizations, has brought about three-dimensional resolution at nanometer scales. However, by using an intrinsic on–off switching process for single fluorophore separation, initial MINFLUX implementations have been limited to two color channels. Here we show that MINFLUX can be effectively combined with sequentially multiplexed DNA-based labeling (DNA-PAINT), expanding MINFLUX nanoscopy to multiple molecular targets. Our method is exemplified with three-color recordings of mitochondria in human cells."],["dc.identifier.doi","10.1038/s41592-022-01577-1"],["dc.identifier.pii","1577"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/114334"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-600"],["dc.relation.eissn","1548-7105"],["dc.relation.issn","1548-7091"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","DNA-PAINT MINFLUX nanoscopy"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2007Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","L67"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Biophysical Journal"],["dc.bibliographiccitation.lastpage","L69"],["dc.bibliographiccitation.volume","92"],["dc.contributor.author","Donnert, Gerald"],["dc.contributor.author","Keller, Jan"],["dc.contributor.author","Wurm, Christian Andreas"],["dc.contributor.author","Rizzoli, Silvio"],["dc.contributor.author","Westphal, Volker"],["dc.contributor.author","Schoenle, Andreas"],["dc.contributor.author","Jahn, Reinhard"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Eggeling, Christian"],["dc.contributor.author","Hell, Stefan"],["dc.date.accessioned","2017-09-07T11:49:49Z"],["dc.date.available","2017-09-07T11:49:49Z"],["dc.date.issued","2007"],["dc.description.abstract","We demonstrate two-color fluorescence microscopy with nanoscale spatial resolution by applying stimulated emission depletion on fluorophores differing in their absorption and emission spectra. Green- and red-emitting fluorophores are selectively excited and quenched using dedicated beam pairs. The stimulated emission depletion beams deliver a lateral resolution of < 30 nm and 65 nm for the green and the red color channel, respectively. The similar to 5 nm alignment accuracy of the two images establishes the precision with which differently labeled proteins are correlated in space. Colocalized nanoscopy is demonstrated with endosomal protein patterns and by resolving nanoclusters of a mitochondrial outer membrane protein, Tom20, in relation with the F(1)F(0)ATP synthase. The joint improvement of resolution and colocalization demonstrates the emerging potential of far-field fluorescence nanoscopy to study the spatial organization of macromolecules in cells."],["dc.identifier.doi","10.1529/biophysj.107.104497"],["dc.identifier.gro","3143514"],["dc.identifier.isi","000245164000003"],["dc.identifier.pmid","17307826"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1037"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0006-3495"],["dc.title","Two-color far-field fluorescence nanoscopy"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2016Journal Article Discussion
    [["dc.bibliographiccitation.artnumber","527a"],["dc.bibliographiccitation.issue","6285"],["dc.bibliographiccitation.journal","Science"],["dc.bibliographiccitation.volume","352"],["dc.contributor.author","Sahl, Steffen J."],["dc.contributor.author","Balzarotti, Francisco"],["dc.contributor.author","Keller-Findeisen, Jan"],["dc.contributor.author","Leutenegger, Marcel"],["dc.contributor.author","Westphal, Volker"],["dc.contributor.author","Egner, Alexander"],["dc.contributor.author","Lavoie-Cardinal, Flavie"],["dc.contributor.author","Chmyrov, Andriy"],["dc.contributor.author","Grotjohann, Tim"],["dc.contributor.author","Jakobs, Stefan"],["dc.date.accessioned","2017-09-07T11:54:33Z"],["dc.date.available","2017-09-07T11:54:33Z"],["dc.date.issued","2016"],["dc.description.abstract","Li et al. (Research Articles, 28 August 2015, aab3500) purport to present solutions to longstanding challenges in live-cell microscopy, reporting relatively fast acquisition times in conjunction with improved image resolution. We question the methods' reliability to visualize specimen features at sub-100-nanometer scales, because the mandatory mathematical processing of the recorded data leads to artifacts that are either difficult or impossible to disentangle from real features. We are also concerned about the chosen approach of subjectively comparing images from different super-resolution methods, as opposed to using quantitative measures."],["dc.identifier.doi","10.1126/science.aad7983"],["dc.identifier.gro","3141696"],["dc.identifier.isi","000374998600028"],["dc.identifier.pmid","27126030"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/58"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1095-9203"],["dc.relation.issn","0036-8075"],["dc.title","Comment on \"Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics\""],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","letter_note"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","9853"],["dc.bibliographiccitation.issue","20"],["dc.bibliographiccitation.journal","Proceedings of the National Academy of Sciences"],["dc.bibliographiccitation.lastpage","9858"],["dc.bibliographiccitation.volume","116"],["dc.contributor.author","Stoldt, Stefan"],["dc.contributor.author","Stephan, Till"],["dc.contributor.author","Jans, Daniel C."],["dc.contributor.author","Brüser, Christian"],["dc.contributor.author","Lange, Felix"],["dc.contributor.author","Keller-Findeisen, Jan"],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Hell, Stefan W."],["dc.contributor.author","Jakobs, Stefan"],["dc.date.accessioned","2020-12-10T18:12:52Z"],["dc.date.available","2020-12-10T18:12:52Z"],["dc.date.issued","2019"],["dc.description.abstract","Mitochondria are tubular double-membrane organelles essential for eukaryotic life. They form extended networks and exhibit an intricate inner membrane architecture. The MICOS (mitochondrial contact site and cristae organizing system) complex, crucial for proper architecture of the mitochondrial inner membrane, is localized primarily at crista junctions. Harnessing superresolution fluorescence microscopy, we demonstrate that Mic60, a subunit of the MICOS complex, as well as several of its interaction partners are arranged into intricate patterns in human and yeast mitochondria, suggesting an ordered distribution of the crista junctions. We show that Mic60 forms clusters that are preferentially localized in the inner membrane at two opposing sides of the mitochondrial tubules so that they form extended opposing distribution bands. These Mic60 distribution bands can be twisted, resulting in a helical arrangement. Focused ion beam milling-scanning electron microscopy showed that in yeast the twisting of the opposing distribution bands is echoed by the folding of the inner membrane. We show that establishment of the Mic60 distribution bands is largely independent of the cristae morphology. We suggest that Mic60 is part of an extended multiprotein interaction network that scaffolds mitochondria."],["dc.identifier.doi","10.1073/pnas.1820364116"],["dc.identifier.pmid","31028145"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/74522"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/66"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P01: Untersuchung der Unterschiede in der Zusammensetzung, Funktion und Position von individuellen MICOS Komplexen in einzelnen Säugerzellen"],["dc.relation.workinggroup","RG Jakobs (Structure and Dynamics of Mitochondria)"],["dc.rights","CC BY-NC-ND 4.0"],["dc.title","Mic60 exhibits a coordinated clustered distribution along and across yeast and mammalian mitochondria"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2022Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","603"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Nature Methods"],["dc.bibliographiccitation.lastpage","612"],["dc.bibliographiccitation.volume","19"],["dc.contributor.author","Bates, Mark"],["dc.contributor.author","Keller-Findeisen, Jan"],["dc.contributor.author","Przybylski, Adrian"],["dc.contributor.author","Hüper, Andreas"],["dc.contributor.author","Stephan, Till"],["dc.contributor.author","Ilgen, Peter"],["dc.contributor.author","Cereceda Delgado, Angel R."],["dc.contributor.author","D’Este, Elisa"],["dc.contributor.author","Egner, Alexander"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2022-06-01T09:39:10Z"],["dc.date.available","2022-06-01T09:39:10Z"],["dc.date.issued","2022"],["dc.description.abstract","Abstract Coherent fluorescence imaging with two objective lenses (4Pi detection) enables single-molecule localization microscopy with sub-10 nm spatial resolution in three dimensions. Despite its outstanding sensitivity, wider application of this technique has been hindered by complex instrumentation and the challenging nature of the data analysis. Here we report the development of a 4Pi-STORM microscope, which obtains optimal resolution and accuracy by modeling the 4Pi point spread function (PSF) dynamically while also using a simpler optical design. Dynamic spline PSF models incorporate fluctuations in the modulation phase of the experimentally determined PSF, capturing the temporal evolution of the optical system. Our method reaches the theoretical limits for precision and minimizes phase-wrapping artifacts by making full use of the information content of the data. 4Pi-STORM achieves a near-isotropic three-dimensional localization precision of 2–3 nm, and we demonstrate its capabilities by investigating protein and nucleic acid organization in primary neurons and mammalian mitochondria."],["dc.description.sponsorship"," European Molecular Biology Organization"],["dc.description.sponsorship"," Max-Planck-Gesellschaft"],["dc.description.sponsorship"," Deutsche Forschungsgemeinschaft"],["dc.identifier.doi","10.1038/s41592-022-01465-8"],["dc.identifier.pii","1465"],["dc.identifier.pmid","35577958"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/108403"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/175"],["dc.identifier.url","https://sfb1286.uni-goettingen.de/literature/publications/166"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-572"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P01: Untersuchung der Unterschiede in der Zusammensetzung, Funktion und Position von individuellen MICOS Komplexen in einzelnen Säugerzellen"],["dc.relation","SFB 1286: Quantitative Synaptologie"],["dc.relation","SFB 1286 | A07: Der Aufbau des synaptischen Cytoskeletts"],["dc.relation.eissn","1548-7105"],["dc.relation.issn","1548-7091"],["dc.relation.workinggroup","RG Jakobs (Structure and Dynamics of Mitochondria)"],["dc.relation.workinggroup","RG Hell"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Optimal precision and accuracy in 4Pi-STORM using dynamic spline PSF models"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","S2211124721014790"],["dc.bibliographiccitation.firstpage","110000"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Cell Reports"],["dc.bibliographiccitation.volume","37"],["dc.contributor.author","Brüser, Christian"],["dc.contributor.author","Keller-Findeisen, Jan"],["dc.contributor.author","Jakobs, Stefan"],["dc.date.accessioned","2022-01-11T14:05:34Z"],["dc.date.available","2022-01-11T14:05:34Z"],["dc.date.issued","2021"],["dc.description.abstract","In human cells, generally a single mitochondrial DNA (mtDNA) is compacted into a nucleoprotein complex denoted the nucleoid. Each cell contains hundreds of nucleoids, which tend to cluster into small groups. It is unknown whether all nucleoids are equally involved in mtDNA replication and transcription or whether distinct nucleoid subpopulations exist. Here, we use multi-color STED super-resolution microscopy to determine the activity of individual nucleoids in primary human cells. We demonstrate that only a minority of all nucleoids are active. Active nucleoids are physically larger and tend to be involved in both replication and transcription. Inactivity correlates with a high ratio of the mitochondrial transcription factor A (TFAM) to the mtDNA of the individual nucleoid, suggesting that TFAM-induced nucleoid compaction regulates nucleoid replication and transcription activity in vivo. We propose that the stable population of highly compacted inactive nucleoids represents a storage pool of mtDNAs with a lower mutational load."],["dc.identifier.doi","10.1016/j.celrep.2021.110000"],["dc.identifier.pii","S2211124721014790"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/97692"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/366"],["dc.identifier.url","https://rdp.sfb274.de/literature/publications/51"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-507"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","TRR 274: Checkpoints of Central Nervous System Recovery"],["dc.relation.issn","2211-1247"],["dc.relation.workinggroup","RG Jakobs (Structure and Dynamics of Mitochondria)"],["dc.rights","CC BY-NC-ND 4.0"],["dc.title","The TFAM-to-mtDNA ratio defines inner-cellular nucleoid populations with distinct activity levels"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2013Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","737"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Nature Methods"],["dc.bibliographiccitation.lastpage","742"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Chmyrov, Andriy"],["dc.contributor.author","Keller, Jan"],["dc.contributor.author","Grotjohann, Tim"],["dc.contributor.author","Ratz, Michael"],["dc.contributor.author","d'Este, Elisa"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Eggeling, Christian"],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2017-09-07T11:47:38Z"],["dc.date.available","2017-09-07T11:47:38Z"],["dc.date.issued","2013"],["dc.description.abstract","We show that nanoscopy based on the principle called RESOLFT (reversible saturable optical fluorescence transitions) or nonlinear structured illumination can be effectively parallelized using two incoherently superimposed orthogonal standing light waves. The intensity minima of the resulting pattern act as 'doughnuts', providing isotropic resolution in the focal plane and making pattern rotation redundant. We super-resolved living cells in 120 mm x 100 mm-sized fields of view in <1 s using 116,000 such doughnuts."],["dc.identifier.doi","10.1038/nmeth.2556"],["dc.identifier.gro","3142317"],["dc.identifier.isi","000322453600020"],["dc.identifier.pmid","23832150"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/6942"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1548-7105"],["dc.relation.issn","1548-7091"],["dc.title","Nanoscopy with more than 100,000 'doughnuts'"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2017Journal Article
    [["dc.bibliographiccitation.artnumber","44619"],["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.journal","Scientific Reports"],["dc.bibliographiccitation.lastpage","9"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Chmyrov, Andriy"],["dc.contributor.author","Leuschner, Ivo"],["dc.contributor.author","Grotjohann, Tim"],["dc.contributor.author","Schoenle, Andreas"],["dc.contributor.author","Keller-Findeisen, Jan"],["dc.contributor.author","Kastrup, Lars"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Donnert, Gerald"],["dc.contributor.author","Sahl, Steffen J."],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2017-09-07T11:50:39Z"],["dc.date.available","2017-09-07T11:50:39Z"],["dc.date.issued","2017"],["dc.description.abstract","Fluorescence microscopy is rapidly turning into nanoscopy. Among the various nanoscopy methods, the STED/RESOLFT super-resolution family has recently been expanded to image even large fields of view within a few seconds. This advance relies on using light patterns featuring substantial arrays of intensity minima for discerning features by switching their fluorophores between ‘on’ and ‘off’ states of fluorescence. Here we show that splitting the light with a grating and recombining it in the focal plane of the objective lens renders arrays of minima with wavelength-independent periodicity. This colour-independent creation of periodic patterns facilitates coaligned on- and off-switching and readout with combinations chosen from a range of wavelengths. Applying up to three such periodic patterns on the switchable fluorescent proteins Dreiklang and rsCherryRev1.4, we demonstrate highly parallelized, multicolour RESOLFT nanoscopy in living cells for ~100 × 100 μm2 fields of view. Individual keratin filaments were rendered at a FWHM of ~60–80 nm, with effective resolution for the filaments of ~80–100 nm. We discuss the impact of novel image reconstruction algorithms featuring background elimination by spatial bandpass filtering, as well as strategies that incorporate complete image formation models."],["dc.identifier.doi","10.1038/srep44619"],["dc.identifier.gro","3145910"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14935"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/3644"],["dc.language.iso","en"],["dc.notes.intern","lifescience"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.relation.issn","2045-2322"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Achromatic light patterning and improved image reconstruction for parallelized RESOLFT nanoscopy"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","21956"],["dc.bibliographiccitation.issue","15"],["dc.bibliographiccitation.journal","Optics Express"],["dc.bibliographiccitation.volume","27"],["dc.contributor.author","Frahm, Lars"],["dc.contributor.author","Keller-Findeisen, Jan"],["dc.contributor.author","Alt, Philipp"],["dc.contributor.author","Schnorrenberg, Sebastian"],["dc.contributor.author","del Álamo Ruiz, Miguel"],["dc.contributor.author","Aspelmeier, Timo"],["dc.contributor.author","Munk, Axel"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2020-12-10T18:42:02Z"],["dc.date.available","2020-12-10T18:42:02Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1364/OE.27.021956"],["dc.identifier.pmid","31510262"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16747"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/77780"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/204"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","DOI-Import GROB-394"],["dc.notes.intern","Merged from goescholar"],["dc.relation","RTG 2088: Research Training Group 2088 Discovering structure in complex data: Statistics meets Optimization and Inverse Problems"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.workinggroup","RG Hell"],["dc.relation.workinggroup","RG Jakobs (Structure and Dynamics of Mitochondria)"],["dc.relation.workinggroup","RG Munk"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Molecular contribution function in RESOLFT nanoscopy"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC